13 research outputs found

    The diversity of the catalytic properties of class A beta-lactamases.

    No full text
    The catalytic properties of four class A beta-lactamases were studied with 24 different substrates. They exhibit a wide range of variation. Similarly, the amino acid sequences are also quite different. However, no relationships were found between the sequence similarities and the substrate profiles. Lags and bursts were observed with various compounds containing a large sterically hindered side chain. As a group, the enzymes could be distinguished from the class C beta-lactamases on the basis of the kappa cat. values for several substrates, particularly oxacillin, cloxacillin and carbenicillin. Surprisingly, that distinction was impossible with the kappa cat./Km values, which represent the rates of acylation of the active-site serine residue by the beta-lactam. For several cephalosporin substrates (e.g. cefuroxime and cefotaxime) class A enzymes consistently exhibited higher kappa cat. values than class C enzymes, thus belying the usual distinction between 'penicillinases' and 'cephalosporinases'. The problem of the repartition of class A beta-lactamases into sub-classes is discussed

    Direct n.m.r. evidence for substrate-induced conformational changes in a beta-lactamase.

    No full text
    Cefoxitin and other beta-lactam antibiotics with a methoxy group on the alpha-face behave as very poor substrates of the Bacillus licheniformis beta-lactamase. The kinetic properties of the enzyme-cefoxitin system made it theoretically suitable for a detailed structural study of the acyl-enzyme. Unfortunately, soaking the crystals in cefoxitin solution did not allow detection of a crystalline acyl-enzyme complex. In contrast, direct observation by n.m.r. of the stable acyl-enzyme formed with cefoxitin and moxalactam indicated clear modifications of the enzyme structure, which were reflected in the aromatic and high-field methyl regions of the spectrum. The return to the initial free enzyme spectrum was concomitant with the hydrolysis of the acyl-enzyme, the process being slow enough to allow multidimensional n.m.r. experiments

    Concomitant adsorption of poly(ethylene oxide)-b-poly(epsilon-caprolactone) copolymers and sodium dodecyl sulfate at the silica-water interface

    Full text link
    Upon addition of silica to aqueous solutions of poly(ethylene oxide)-b-poly(epsilon-caprolactone) copolymers (PEO-b-PCL) and sodium dodecyl sulfate (SDS), adsorption of the solutes occurs at the silica-water interface. The amount of the adsorbed constituents has been measured by the total concentration depletion method. Small-angle neutron scattering experiments (SANS) have been carried out to investigate the structure of the adsorbed layer. Although SDS is not spontaneously adsorbed onto hydrophilic silica, adsorption is observed in the presence of PEO-b-PCL diblocks, in relation to the relative concentration of the two compounds. Conversely, SDS has a depressive effect on the adsorption of the copolymer, whose structure at the interface is modified. Copolymer desorption is however never complete at high SDS content. These observations have been rationalized by the associative behavior of PEO-b-PCL and SDS in water
    corecore