50 research outputs found

    Alkaline volcanism associated with early stage of rifting : East African Rift, Tanzania, Manyara basin

    No full text
    Le rift Est africain (REA) est une frontiĂšre de plaque en extension. Ce rift prĂ©sente plusieurs stades d’extension, de l’initiation du rift en Tanzanie jusqu’à l’accrĂ©tion ocĂ©anique en Afar. Le bassin de Manyara se situe le plus au sud de branche Est du REA. Il est caractĂ©risĂ© par la prĂ©sence de volcanisme rĂ©cent ( 55) (Labait, Kwaraha), de calciocarbonatite (Kwaraha) et des nĂ©phĂ©linites diffĂ©renciĂ©es (Mg# 120 km (prĂ©sence de xĂ©nolites avec des conditions d’équilibre > 4 GPa). Les minĂ©raux ont cristallisĂ©s Ă  partir d’un magma pauvre en eau (0,1 et 0,5 pds % H2O). La calciocarbonatite et les nĂ©phĂ©linites diffĂ©renciĂ©s sont issues des nĂ©phĂ©linites magnĂ©siennes par cristallisation fractionnĂ©e et processus d’immiscibilitĂ©. Les nĂ©phĂ©linites du Hanang sont riches en Ă©lĂ©ments alcalins (9,5 – 12,1 pds % Na2O+K2O) et en silice (44,2 – 46,7 pds% SiO2) et sont composĂ©s de cpx, grenat, nĂ©phĂ©line, titanite et apatite. La zonation complexe dans les cpx (par exemple, changement brusque de Mg#, Nb/Ta, et H2O) implique une diffĂ©renciation magmatique en systĂšme ouvert avec immiscibilitĂ© de liquide carbonatĂ© et silicatĂ© ainsi qu’un remplissage de la chambre magmatique avec des liquides primaires. La faible teneur en eau des cpx (3 – 25 ppm H2O) indique la prĂ©sence d’un magma pauvre en eau (0,3 pds % H2O) lors de la cristallisation des cpx Ă  des conditions crustales (340 – 640 MPa et 1050 – 1100 °C). L’étude des inclusions vitreuses dans les nĂ©phĂ©lines de Hanang permet de contraindre l'Ă©volution magmatique tardive des nĂ©phĂ©linites et le comportement des Ă©lĂ©ments volatils (CO2, H2O, S, F, Cl) lors du stockage et de la remontĂ©e du magma. Les inclusions vitreuses sont composĂ©es d’un verre trachytique, d’une phase carbonatĂ©e et d’une bulle de rĂ©traction. Le verre trachytique contient du CO2 (0,43 pds % CO2, analyses SIMS), du soufre (0,21 Ă  0,92 pds% S), du chlore (0,28 – 0,84 pds % Cl) et trĂšs peu d’H2O ( 55) (Labait, Kwaraha), calciocarbonatite (Kwaraha) and evolved nephelinites (Mg# 120 km (lava carries xenoliths with equilibrium conditions > 4 GPa). The minerals were crystallized from a magma with a low H2O content (0.1 and 0.5 wt% H2O). The calciocarbonatite and evolved nephelinites are derived from Mg-nephelinites by fractional crystallization and immiscibility processes. Hanang nephelinites are silica- and alkaline-rich lavas (44.2 – 46.7 wt % SiO2, 9.5 –12.1 wt % Na2O+K2O, respectively) composed by cpx, Ti-garnet, nepheline, apatite and titanite. Complex zonation of cpx (e.g. abrupt change of Mg#, Nb/Ta, and H2O) and trace element patterns of nephelinites record magmatic differentiation involving open system with carbonate-silicate immiscibility and primary melt replenishment. The low H2O content of cpx (3 – 25 ppm wt. H2O) indicates that at least 0.3 wt % H2O was present at depth during carbonate-rich nephelinite crystallization at 340 – 640 MPa and 1050 – 1100 °C. The study of hosted-nepheline melt inclusions from Hanang allows constraining the late magmatic evolution of nephelinites during storage and magma ascent. Melt inclusions are composed by a silicate trachytic glass, a carbonate phase and a shrinkage bubble. Trachytic glass contains high content in CO2 (0.43 wt %, SIMS analyses), sulfur (0.21 – 0.92 wt % S), chlorine (0.28 –0.84 wt % Cl) and H2O low content (< 0.1 wt %, Raman analyses). Immiscibility process leading to the formation of carbonate occurs in a closed system during rapid magma ascent between 200 – 500 MPa. The carbonate phase is a Ca-Na-K-S-rich and anhydrous carbonate (33 wt % CaO, 20 wt % Na2O, 3 wt % K2O, and 3 wt % S). The pre-immiscible liquid has a phonolitic composition with 6 ± 1.5 wt % CO2 at 700 MPa. A preliminary study of melt inclusions by XANES spectroscopy and whole rocks by Mössbauer spectroscopy was used to determine these Manyara lavas were formed at oxidizing conditions (~ ΔFMQ +1.5).The early stage rifting volcanism (Manyara Basin) is characterized by CO2-rich and H2O-poor magmas from at least 120 km below the rift escarpment. The presence of CO2-rich magmas and the small amount of volcanic rocks erupted at the surface may indicate that the storage and percolation of these magmas at depth is a potential trigger for deep seismic swarms

    Volcanisme alcalin associé à l'initiation de la rupture continentale : Rift Est Africain, Tanzanie, bassin de Manyara

    No full text
    East African Rift (EAR) is the divergent plate boundary. EAR exposes different stages of extension, from early stage rifting in Tanzania to oceanic accretion in Afar (Ethiopia). Manyara basin is the southernmost rift system of the east branch of EAR with recent volcanism ( 55) (Labait, Kwaraha), calciocarbonatite (Kwaraha) and evolved nephelinites (Mg# 120 km (lava carries xenoliths with equilibrium conditions > 4 GPa). The minerals were crystallized from a magma with a low H2O content (0.1 and 0.5 wt% H2O). The calciocarbonatite and evolved nephelinites are derived from Mg-nephelinites by fractional crystallization and immiscibility processes. Hanang nephelinites are silica- and alkaline-rich lavas (44.2 – 46.7 wt % SiO2, 9.5 –12.1 wt % Na2O+K2O, respectively) composed by cpx, Ti-garnet, nepheline, apatite and titanite. Complex zonation of cpx (e.g. abrupt change of Mg#, Nb/Ta, and H2O) and trace element patterns of nephelinites record magmatic differentiation involving open system with carbonate-silicate immiscibility and primary melt replenishment. The low H2O content of cpx (3 – 25 ppm wt. H2O) indicates that at least 0.3 wt % H2O was present at depth during carbonate-rich nephelinite crystallization at 340 – 640 MPa and 1050 – 1100 °C. The study of hosted-nepheline melt inclusions from Hanang allows constraining the late magmatic evolution of nephelinites during storage and magma ascent. Melt inclusions are composed by a silicate trachytic glass, a carbonate phase and a shrinkage bubble. Trachytic glass contains high content in CO2 (0.43 wt %, SIMS analyses), sulfur (0.21 – 0.92 wt % S), chlorine (0.28 –0.84 wt % Cl) and H2O low content ( 55) (Labait, Kwaraha), de calciocarbonatite (Kwaraha) et des nĂ©phĂ©linites diffĂ©renciĂ©es (Mg# 120 km (prĂ©sence de xĂ©nolites avec des conditions d’équilibre > 4 GPa). Les minĂ©raux ont cristallisĂ©s Ă  partir d’un magma pauvre en eau (0,1 et 0,5 pds % H2O). La calciocarbonatite et les nĂ©phĂ©linites diffĂ©renciĂ©s sont issues des nĂ©phĂ©linites magnĂ©siennes par cristallisation fractionnĂ©e et processus d’immiscibilitĂ©. Les nĂ©phĂ©linites du Hanang sont riches en Ă©lĂ©ments alcalins (9,5 – 12,1 pds % Na2O+K2O) et en silice (44,2 – 46,7 pds% SiO2) et sont composĂ©s de cpx, grenat, nĂ©phĂ©line, titanite et apatite. La zonation complexe dans les cpx (par exemple, changement brusque de Mg#, Nb/Ta, et H2O) implique une diffĂ©renciation magmatique en systĂšme ouvert avec immiscibilitĂ© de liquide carbonatĂ© et silicatĂ© ainsi qu’un remplissage de la chambre magmatique avec des liquides primaires. La faible teneur en eau des cpx (3 – 25 ppm H2O) indique la prĂ©sence d’un magma pauvre en eau (0,3 pds % H2O) lors de la cristallisation des cpx Ă  des conditions crustales (340 – 640 MPa et 1050 – 1100 °C). L’étude des inclusions vitreuses dans les nĂ©phĂ©lines de Hanang permet de contraindre l'Ă©volution magmatique tardive des nĂ©phĂ©linites et le comportement des Ă©lĂ©ments volatils (CO2, H2O, S, F, Cl) lors du stockage et de la remontĂ©e du magma. Les inclusions vitreuses sont composĂ©es d’un verre trachytique, d’une phase carbonatĂ©e et d’une bulle de rĂ©traction. Le verre trachytique contient du CO2 (0,43 pds % CO2, analyses SIMS), du soufre (0,21 Ă  0,92 pds% S), du chlore (0,28 – 0,84 pds % Cl) et trĂšs peu d’H2O (< 0,1 pds % H2O, analyses Raman). Le processus d’immiscibilitĂ© conduisant Ă  la formation du carbonate se produit dans un systĂšme fermĂ© pendant l'ascension rapide du magma, entre 200 – 500 MPa. La phase carbonatĂ©e est un carbonate anhydre et riche en Ca-Na-K-S (33 pds % CaO, 20 pds % Na2O, 3 pds % K2O, et 3 pds % S). Le liquide prĂ©-immiscible a une composition phonolitique avec 6 ± 1,5 pds % CO2 Ă  une pression de 700 MPa. Une Ă©tude prĂ©liminaire des inclusions par spectroscopie XANES et des roches par spectroscopie Mössbauer a permis de dĂ©terminer que les laves de Manyara se sont formĂ©es Ă  conditions oxydantes (~ ∆FMQ +1,5).À l’initiation du rift, le volcanisme dans le bassin de Manyara est caractĂ©risĂ© par des magmas riches en CO2 et pauvres en H2O issus d’au moins 120 km de profondeur sous l'escarpement du rift. La prĂ©sence de ces magmas riches en CO2 et la faible quantitĂ© de roches volcaniques Ă©mises Ă  la surface peuvent indiquer que le piĂ©geage et la percolation de ces magmas en profondeur est un dĂ©clencheur potentiel des essaims sismiques profonds

    Volcanisme alcalin associé à l'initiation de la rupture continentale : Rift Est Africain, Tanzanie, bassin de Manyara

    No full text
    East African Rift (EAR) is the divergent plate boundary. EAR exposes different stages of extension, from early stage rifting in Tanzania to oceanic accretion in Afar (Ethiopia). Manyara basin is the southernmost rift system of the east branch of EAR with recent volcanism ( 55) (Labait, Kwaraha), calciocarbonatite (Kwaraha) and evolved nephelinites (Mg# 120 km (lava carries xenoliths with equilibrium conditions > 4 GPa). The minerals were crystallized from a magma with a low H2O content (0.1 and 0.5 wt% H2O). The calciocarbonatite and evolved nephelinites are derived from Mg-nephelinites by fractional crystallization and immiscibility processes. Hanang nephelinites are silica- and alkaline-rich lavas (44.2 – 46.7 wt % SiO2, 9.5 –12.1 wt % Na2O+K2O, respectively) composed by cpx, Ti-garnet, nepheline, apatite and titanite. Complex zonation of cpx (e.g. abrupt change of Mg#, Nb/Ta, and H2O) and trace element patterns of nephelinites record magmatic differentiation involving open system with carbonate-silicate immiscibility and primary melt replenishment. The low H2O content of cpx (3 – 25 ppm wt. H2O) indicates that at least 0.3 wt % H2O was present at depth during carbonate-rich nephelinite crystallization at 340 – 640 MPa and 1050 – 1100 °C. The study of hosted-nepheline melt inclusions from Hanang allows constraining the late magmatic evolution of nephelinites during storage and magma ascent. Melt inclusions are composed by a silicate trachytic glass, a carbonate phase and a shrinkage bubble. Trachytic glass contains high content in CO2 (0.43 wt %, SIMS analyses), sulfur (0.21 – 0.92 wt % S), chlorine (0.28 –0.84 wt % Cl) and H2O low content ( 55) (Labait, Kwaraha), de calciocarbonatite (Kwaraha) et des nĂ©phĂ©linites diffĂ©renciĂ©es (Mg# 120 km (prĂ©sence de xĂ©nolites avec des conditions d’équilibre > 4 GPa). Les minĂ©raux ont cristallisĂ©s Ă  partir d’un magma pauvre en eau (0,1 et 0,5 pds % H2O). La calciocarbonatite et les nĂ©phĂ©linites diffĂ©renciĂ©s sont issues des nĂ©phĂ©linites magnĂ©siennes par cristallisation fractionnĂ©e et processus d’immiscibilitĂ©. Les nĂ©phĂ©linites du Hanang sont riches en Ă©lĂ©ments alcalins (9,5 – 12,1 pds % Na2O+K2O) et en silice (44,2 – 46,7 pds% SiO2) et sont composĂ©s de cpx, grenat, nĂ©phĂ©line, titanite et apatite. La zonation complexe dans les cpx (par exemple, changement brusque de Mg#, Nb/Ta, et H2O) implique une diffĂ©renciation magmatique en systĂšme ouvert avec immiscibilitĂ© de liquide carbonatĂ© et silicatĂ© ainsi qu’un remplissage de la chambre magmatique avec des liquides primaires. La faible teneur en eau des cpx (3 – 25 ppm H2O) indique la prĂ©sence d’un magma pauvre en eau (0,3 pds % H2O) lors de la cristallisation des cpx Ă  des conditions crustales (340 – 640 MPa et 1050 – 1100 °C). L’étude des inclusions vitreuses dans les nĂ©phĂ©lines de Hanang permet de contraindre l'Ă©volution magmatique tardive des nĂ©phĂ©linites et le comportement des Ă©lĂ©ments volatils (CO2, H2O, S, F, Cl) lors du stockage et de la remontĂ©e du magma. Les inclusions vitreuses sont composĂ©es d’un verre trachytique, d’une phase carbonatĂ©e et d’une bulle de rĂ©traction. Le verre trachytique contient du CO2 (0,43 pds % CO2, analyses SIMS), du soufre (0,21 Ă  0,92 pds% S), du chlore (0,28 – 0,84 pds % Cl) et trĂšs peu d’H2O (< 0,1 pds % H2O, analyses Raman). Le processus d’immiscibilitĂ© conduisant Ă  la formation du carbonate se produit dans un systĂšme fermĂ© pendant l'ascension rapide du magma, entre 200 – 500 MPa. La phase carbonatĂ©e est un carbonate anhydre et riche en Ca-Na-K-S (33 pds % CaO, 20 pds % Na2O, 3 pds % K2O, et 3 pds % S). Le liquide prĂ©-immiscible a une composition phonolitique avec 6 ± 1,5 pds % CO2 Ă  une pression de 700 MPa. Une Ă©tude prĂ©liminaire des inclusions par spectroscopie XANES et des roches par spectroscopie Mössbauer a permis de dĂ©terminer que les laves de Manyara se sont formĂ©es Ă  conditions oxydantes (~ ∆FMQ +1,5).À l’initiation du rift, le volcanisme dans le bassin de Manyara est caractĂ©risĂ© par des magmas riches en CO2 et pauvres en H2O issus d’au moins 120 km de profondeur sous l'escarpement du rift. La prĂ©sence de ces magmas riches en CO2 et la faible quantitĂ© de roches volcaniques Ă©mises Ă  la surface peuvent indiquer que le piĂ©geage et la percolation de ces magmas en profondeur est un dĂ©clencheur potentiel des essaims sismiques profonds

    Trace element partitioning between wollastonite and alkaline silicate magmas

    Get PDF
    International audienceThe partitioning of trace elements between wollastonite and melt provides a choice tool for understanding differentiation processes and trace element fractionation in alkaline-rich and silica-undersaturated magmatic systems at crustal conditions, but very few data are currently available. Here we provide the first partition coefficients and associated lattice strain parameters between wollastonite and silicate magmas of Oldoinyo Lengai (Tanzania). Trace element partitioning of isovalent cations shows a parabolic dependence between the partition coefficients and ionic radii explained by the lattice strain model with the site radius (r 0) decreasing with increasing charge from r 0 1+ = 1.2 Å to r 0 5+ = 0.6 Å. Bivalent cations are moderately incompatible (D Mg = 0.12 and D Sr = 0.5) to compatible (D Mn = 1). High field strength elements such as Zr and Nb are strongly incompatible in wollastonite (D < 0.01), and rare earth element (REE) partition coefficients increase with decreasing ionic radius from D La = 0.19 to D Lu = 2.8. The crystallization of wollastonite could eventually strongly influence REE fractionation (and more specifically the light-heavy REE ratios) during magmatic differentiation of alkali-rich foiditic melts and should therefore be considered to fully understand trace element evolution and partitioning in alkaline and silica-undersaturated magmas

    Role of volatiles (S, Cl, H2O) and silica activity on the crystallization of hauyne and nosean in phonolitic magmas (Eifel, Germany and Saghro, Morocco)

    No full text
    International audienceTo constrain the crystallization of alkaline and volatile-rich lavas present in intraplate settings, we studied the petrological features and the geochemical composition of major, trace, and volatile elements of mineral and bulk-rock of two sodalite-bearing phonolites: (1) haĂŒyne-plagioclase-bearing Si-K-rich phonolite from Laacher See (Germany) and (2) nosean-nepheline-bearing Si-poor phonolite from Saghro (Morocco). In haĂŒyne-bearing phonolites (55–59 wt% SiO2, K > Na, Na+K/Al = 0.96–1.08), we found that the low silica and low sodium activity promoted the early crystallization of S-rich haĂŒyne (13.7–13.9 wt% SO3, 0.4 wt% Cl) + S-rich apatite (0.7–0.9 wt% SO3), titanite, and rare pyrrhotite followed by clinopyroxene-plagioclase-sanidine at relatively low pressure and temperature (P = 250 MPa and T = 850 °C) and oxidized condition (ΔNNO-NNO+1, where NNO is nickel-nickel oxide buffer). The crystallization of haĂŒyne occurred at fluid-undersaturated conditions from a silicate melt with 6 wt% H2O, 0.17–0.23 wt% Cl, 0.11–0.4 wt% S, and 0.07–0.14 wt% F. Nosean-bearing phonolites from Saghro are silica-poor and peralkaline (52–54 wt% SiO2, Na > K, Na+K/Al = 1.2) and crystallized at higher P and T (300 MPa and 950 °C) and more reduced conditions (NNO) compared to haĂŒyne-bearing phonolites. The incongruent reaction to form nosean requires high silica and Na2O activity. The mineral assemblage and composition suggest early crystallization of nepheline followed by nosean (7.8–8.8 wt% SO3; 1–1.1 wt% Cl). The sequence of crystallization is: clinopyroxene + nepheline + S-poor apatite (<0.04 wt% SO3) + pyrrhotite followed by nosean and titanite. Nosean-bearing magmas are fluid-undersaturated with relatively low volatile content (4 wt% H2O, <0.25 wt% Cl, <0.056 wt% S, 0.08–0.1 wt% F), although Cl may have exsolved during ascent and formed a fluid phase (NaCl-bearing).Both haĂŒyne- and nosean-bearing phonolites are last equilibrated at relatively low pressure and high temperature. HaĂŒyne and nosean crystallized at oxidized and volatile-rich pre-eruptive conditions. They record the volatile concentrations at depth and may be used as oxybarometer. The incongruent reactions involved to form haĂŒyne and nosean suggest that phonolitic magmas became more oxidized during crystallization. The initial volatile concentrations in basanite/nephelinite magmas, from partial melting of volatile-bearing K2O-rich mantle rock, should have been one important factor influencing the crystallization of haĂŒyne-bearing Si-K-rich phonolite and nosean-bearing Si-poor phonolite in intracontinental setting

    Phlogopite-Olivine Nephelinites Erupted During Early Stage Rifting, North Tanzanian Divergence

    No full text
    International audienceThe North Tanzanian Divergence (NTD, eastern branch of the East African Rift) corresponds to an early stage of continental breakup. In the southern NTD, two quaternary volcanoes of the Manyara-Balangida rift (Labait, Kwaraha) have erupted primary nephelinite lavas (Mg# = 79–57) that allow characterization of their deep mantle source and the alkaline magmas that percolated through the lithosphere during rift initiation. Nephelinites are olivine- and clinopyroxene-rich, and contain up to 4 vol% magmatic phlogopite that crystallized as a liquidus phase with olivine and clinopyroxene. The presence of hydrous mineral (phlogopite) phenocrysts in Kwaraha and Labait lavas strongly suggests that the alkaline melts were H2O-bearing at the time of phlogopite crystallization (1.57–2.12 wt% H2O in phlogopite), demonstrating that phlogopite may have influenced the partitioning of water between the silicate melt and anhydrous silicate minerals (<1 ppm wt H2O clinopyroxene, 1–6 ppm wt H2O in olivine). Geochemical modeling indicates that the nephelinite magmas resulted from a low degree of partial melting (0.2–1%) of a carbonate-rich (0.3%) garnet peridotite containing ∌2 vol% phlogopite. We estimate the depth of partial melting based on primary melt compositions and empirical relations, and suggest that melting occurred at depths of 110–130 km (4 GPa) for craton-edge lavas (Kwaraha volcano) and 150 km (5 GPa) for on-craton lavas (Labait volcano), close to or below the lithosphere-asthenosphere boundary in agreement with the presence of deep refractory mantle xenoliths in Labait lavas. The depth of melting becomes gradually deeper toward the southern NTD: highly alkaline magmas in the north (Engaruka-Natron Basin) are sourced from amphibole- and CO2-rich peridotite at 75–90 km depth, whereas magmatism in the south (south Manyara Basin) is sourced from deep phlogopite- and CO2-rich garnet-peridotite beneath the Tanzania craton (e.g., at the on-craton Labait volcano). Percolation of deep asthenospheric CO2-rich alkaline magmas during their ascent may have produced strong heterogeneities in the thick sub-continental lithospheric mantle by inducing metasomatism and phlogopite crystallization in glimmerite lithologies

    Trace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt: implications for natrocarbonatite evolution

    No full text
    International audienceTrace-element partitioning between gregoryite, nyerereite, and natrocarbonatite melt is primordial for understanding trace-element distribution and fractionation in alkali-rich carbonatites. However, trace-element data are scarce for gregoryite and nyerereite. Here, we provide the first partition coefficients and lattice strain model parameters for trace-element partitioning between these carbonate minerals and natrocarbonatite at Oldoinyo Lengai (Tanzania). Nyerereite and gregoryite phenocrysts crystallize within a shallow magmatic reservoir (< 3 km depth, ~ 600 °C), and gregoryite continues to crystallize during magma ascent at lower pressures. At these low-temperature and pressure conditions, trace elements behave incompatibly in both gregoryite and nyerereite. Trace-element partitioning is characterized by a parabolic fit between the partition coefficients and ionic radii that is explained by a lattice strain model in which the site radius (r0) decreases with increasing charge from r01+  = 1.1 Å to r04+  = 0.75 Å. We observed different partition coefficients in gregoryite (Ggy) and nyerereite (Nye): those in nyerereite are greater than those in gregoryite for REEs (DNyeNd= 0.58 vs. DGgyNd = 0.21; DNyeLa = 0.27 vs. DGgyLa = 0.12), Sr (DNyeSr= 0.92 vs. DGgySr = 0.5), Ba (DNyeBa= 0.22 vs. DGgyBa = 0.1), and Rb (DNyeRb= 0.35 vs. DGgyRb = 0.26), but lower for HFSEs (e.g., DNyeHf = 0.13 vs. DGgyHf = 0.28; DNyeNb = 0.02 vs. DGgyNb = 0.08). Because all trace elements are incompatible, their concentrations increase in the melt during differentiation and the crystallization of both gregoryite and nyerereite. Due to their different partition coefficients, we can constrain the shallow crustal crystallization history of natrocarbonatite melts at Oldoinyo Lengai: the crystallization of roughly equal proportions of gregoryite and nyerereite can produce aphyric natrocarbonatite compositions from a typical natrocarbonatite composition. The late-stage crystallization of gregoryite alone during magmatic ascent and eruption can significantly impact the concentrations of key elements, such as increasing LREE contents and LREE/HFSE and LILE/HFSE ratios in the residual melt. Our results also highlight that natrocarbonatite melt crystallization during the 2019 eruption proceeded at temperatures from 600 °C to as low as 300 °C

    La société de l'amélioration (le renversement de la perfectibilité humaine, de l'humanisme des LumiÚres à l'humain augmenté)

    No full text
    Du dopage sportif Ă  l usage de psychotropes pour accroĂźtre les capacitĂ©s intellectuelles ou mieux contrĂŽler les Ă©motions, du recours aux nouvelles technologies reproductives permettant une maĂźtrise croissante des naissances, au dĂ©veloppement d une mĂ©decine anti-Ăąge qui oeuvre Ă  l effacement de toute trace du vieillissement, jamais il n a Ă©tĂ© autant question d amĂ©liorer l ĂȘtre humain et ses performances par le biais des avancĂ©es technoscientifiques et biomĂ©dicales contemporaines. Cette Ă©tude interroge cette aspiration Ă  un humain augmentĂ© Ă  la lumiĂšre de l idĂ©al humaniste et politique de la perfectibilitĂ© humaine systĂ©matisĂ© par les philosophes des LumiĂšres au 18Ăšme siĂšcle, en particulier dans l oeuvre et la pensĂ©e de Jean-Jacques Rousseau. À la diffĂ©rence du modĂšle politique et humaniste de la perfectibilitĂ©, qui valorise l amĂ©lioration de la condition humaine dans et par la sociĂ©tĂ©, au coeur de l imaginaire dĂ©mocratique moderne, la sociĂ©tĂ© de l amĂ©lioration contemporaine paraĂźt, elle, promouvoir un modĂšle de perfectibilitĂ© dĂ©politisĂ©, axĂ© sur l adaptabilitĂ© technoscientifique de l ĂȘtre humain et la transformation de la vie en elle-mĂȘme. À travers une excursion au sein l histoire de la pensĂ©e sociale, l objectif de cette Ă©tude est de comprendre comment un tel renversement et une telle dĂ©politisation de la perfectibilitĂ© ont pu avoir lieu. De Jean-Jacques Rousseau Ă  Karl Marx, de Auguste Comte Ă  Francis Galton, despenseurs postmodernes au mouvement transhumaniste, cette thĂšse offre une gĂ©nĂ©alogie synthĂ©tique de la sociĂ©tĂ© de l amĂ©lioration dans laquelle nous entrons, seule Ă  mĂȘme d Ă©clairer de maniĂšre critique des transformations sociales et technoscientifiques trop souvent prĂ©sentĂ©es sous le masque de l inĂ©luctabilitĂ©Whether we speak of doping in sport, the use of psychoactive drugs to improve man s intellectual performance or better check his emotions, new reproductive technologies allowing more efficient birth control, or anti-aging medicine to erase the effects of time, there is no denying that enhancing humans through the use of technoscientific and biomedical means has grown more pervasive in our contemporary societies. This study questions today s quest for human enhancement under the light of the humanist and political ideal of perfectibility defined by 18th century Enlightenment philosophers, particularly in the work and thought of Jean-Jacques Rousseau. In contrast to the humanist andpolitical model of perfectibility, which promotes the improvement of the human condition by and through society, at the core of the democratic ideal, today s enhancement society seems to champion a depoliticized model of perfectibility focused on human technoscientific adaptability and the transformation of life itself.Offering a journey through the history of social thought, the objective of this study is to understand how such a reversal and depoliticization of the concept of perfectibility may have been possible. From Jean-Jacques Rousseau to Karl Marx, Auguste Comte and Francis Galton, from postmodern thinkers to the transhumanist movement, this thesis presents a synthetic genealogy of the enhancement society we are entering, which allows for a critical analysis of socialand technoscientific transformations that have too often been presented behind the mask of ineluctabilityRENNES1-Bibl. Ă©lectronique (352382106) / SudocSudocFranceF
    corecore