13 research outputs found
Social inequalities and correlates of psychotropic drug use among young adults: a population-based questionnaire study
<p>Abstract</p> <p>Background</p> <p>Use of psychotropic drugs is widespread in Europe, and is markedly more common in France than elsewhere. Young adults often fare less well than adolescents on health indicators (injury, homicide, and substance use). This population-based study assessed disparities in psychotropic drug use among people aged 18–29 from different socio-occupational groups and determined whether they were mediated by educational level, health status, income, health-related behaviours, family support, personality traits, or disability.</p> <p>Methods</p> <p>A total of 1,257 people aged 18–29, randomly selected in north-eastern France completed a post-mailed questionnaire covering sex, date of birth, height, weight, educational level, occupation, smoking habit, alcohol abuse, income, health-status, diseases, reported disabilities, self-reported personality traits, family support, and frequent psychotropic medication for tiredness, nervousness/anxiety or insomnia. The data were analyzed using the adjusted odds ratios (ORa) computed with logistic models.</p> <p>Results</p> <p>Use of psychotropic drugs was common (33.2%). Compared with upper/intermediate professionals, markedly high odds ratios adjusted for sex were found for manual workers (2.57, 95% CI 1.02–6.44), employees (2.58, 1.11–5.98), farmers/craftsmen/tradesmen (4.97, 1.13–21.8), students (2.40, 1.06–5.40), and housewives (3.82, 1.39–10.5). Adjusting for all the confounders considered reduced the estimates to a pronounced degree for manual workers (adjusted OR 1.49, non-significant) but only slightly for the other socio-occupational groups. The odds ratio for unemployed people did not reach statistical significance. The significant confounders were: sex, not-good health status, musculoskeletal disorders and other diseases, being worried, nervous or sad, and lack of family support (adjusted odds ratios between 1.60 and 2.50).</p> <p>Conclusion</p> <p>There were marked disparities among young adults from different socio-occupational groups. Sex, health status, musculoskeletal diseases, family support, and personality traits were related to use of psychotropic drugs. These factors mediated the higher risk strongly among manual workers and slightly among the other groups.</p
NK-like homeodomain proteins activate NOTCH3-signaling in leukemic T-cells
<p>Abstract</p> <p>Background</p> <p>Homeodomain proteins control fundamental cellular processes in development and in cancer if deregulated. Three members of the NK-like subfamily of homeobox genes (NKLs), TLX1, TLX3 and NKX2-5, are implicated in T-cell acute lymphoblastic leukemia (T-ALL). They are activated by particular chromosomal aberrations. However, their precise function in leukemogenesis is still unclear. Here we screened further NKLs in 24 T-ALL cell lines and identified the common expression of MSX2. The subsequent aim of this study was to analyze the role of MSX2 in T-cell differentiation which may be disturbed by oncogenic NKLs.</p> <p>Methods</p> <p>Specific gene activity was examined by quantitative real-time PCR, and globally by expression profiling. Proteins were analyzed by western blot, immuno-cytology and immuno-precipitation. For overexpression studies cell lines were transduced by lentiviruses.</p> <p>Results</p> <p>Quantification of MSX2 mRNA in primary hematopoietic cells demonstrated higher levels in CD34+ stem cells as compared to peripheral blood cells and mature CD3+ T-cells. Furthermore, analysis of MSX2 expression levels in T-cell lines after treatment with core thymic factors confirmed their involvement in regulation. These results indicated that MSX2 represents an hematopoietic NKL family member which is downregulated during T-cell development and may functionally substituted by oncogenic NKLs. For functional analysis JURKAT cells were lentivirally transduced, overexpressing either MSX2 or oncogenic TLX1 and NKX2-5, respectively. These cells displayed transcriptional activation of NOTCH3-signaling, including NOTCH3 and HEY1 as analyzed by gene expression profiling and quantitative RT-PCR, and consistently attenuated sensitivity to gamma-secretase inhibitor as analyzed by MTT-assays. Furthermore, in addition to MSX2, both TLX1 and NKX2-5 proteins interacted with NOTCH-pathway repressors, SPEN/MINT/SHARP and TLE1/GRG1, representing a potential mechanism for (de)regulation. Finally, elevated expression of NOTCH3 and HEY1 was detected in primary TLX1/3 positive T-ALL cells corresponding to the cell line data.</p> <p>Conclusion</p> <p>Identification and analysis of MSX2 in hematopoietic cells implicates a modulatory role via NOTCH3-signaling in early T-cell differentiation. Our data suggest that reduction of NOTCH3-signaling by physiological downregulation of MSX2 expression during T-cell development is abrogated by ectopic expression of oncogenic NKLs, substituting MSX2 function.</p
In Vivo Fate Analysis Reveals the Multipotent and Self-Renewal Features of Embryonic AspM Expressing Cells
Radial Glia (RG) cells constitute the major population of neural progenitors of the mouse developing brain. These cells are located in the ventricular zone (VZ) of the cerebral cortex and during neurogenesis they support the generation of cortical neurons. Later on, during brain maturation, RG cells give raise to glial cells and supply the adult mouse brain of Neural Stem Cells (NSC). Here we used a novel transgenic mouse line expressing the CreERT2 under the control of AspM promoter to monitor the progeny of an early cohort of RG cells during neurogenesis and in the post natal brain. Long term fate mapping experiments demonstrated that AspM-expressing RG cells are multi-potent, as they can generate neurons, astrocytes and oligodendrocytes of the adult mouse brain. Furthermore, AspM descendants give also rise to proliferating progenitors in germinal niches of both developing and post natal brains. In the latter –i.e. the Sub Ventricular Zone- AspM descendants acquired several feature of neural stem cells, including the capability to generate neurospheres in vitro. We also performed the selective killing of these early progenitors by using a Nestin-GFPflox-TK allele. The forebrain specific loss of early AspM expressing cells caused the elimination of most of the proliferating cells of brain, a severe derangement of the ventricular zone architecture, and the impairment of the cortical lamination. We further demonstrated that AspM is expressed by proliferating cells of the adult mouse SVZ that can generate neuroblasts fated to become olfactory bulb neurons
Joining S100 proteins and migration:for better or for worse, in sickness and in health
The vast diversity of S100 proteins has demonstrated a multitude of biological correlations with cell growth, cell differentiation and cell survival in numerous physiological and pathological conditions in all cells of the body. This review summarises some of the reported regulatory functions of S100 proteins (namely S100A1, S100A2, S100A4, S100A6, S100A7, S100A8/S100A9, S100A10, S100A11, S100A12, S100B and S100P) on cellular migration and invasion, established in both culture and animal model systems and the possible mechanisms that have been proposed to be responsible. These mechanisms involve intracellular events and components of the cytoskeletal organisation (actin/myosin filaments, intermediate filaments and microtubules) as well as extracellular signalling at different cell surface receptors (RAGE and integrins). Finally, we shall attempt to demonstrate how aberrant expression of the S100 proteins may lead to pathological events and human disorders and furthermore provide a rationale to possibly explain why the expression of some of the S100 proteins (mainly S100A4 and S100P) has led to conflicting results on motility, depending on the cells used. © 2013 Springer Basel