5 research outputs found

    In vivo and in vitro FMN prenylation and (de)carboxylase activation under aerobic conditions

    Get PDF
    Prenylated FMN (prFMN) is a newly discovered redox cofactor required for activity of the large family of reversible UbiD (de)carboxylases involved in biotransformation of aromatic, heteroaromatic, and unsaturated aliphatic acids (White et al., 2015). Despite the growing demand for decarboxylases in the pulp/paper industry and in forest biorefineries, the vast majority of UbiD-like decarboxylases remain uncharacterized. Functional characterization of the novel UbiD decarboxylases is hindered by the lack of prFMN generating system. prFMN cofactor is synthesized by the UbiX family of FMN prenyltransferases, which use reduced FMN as substrate under anaerobic conditions and dimethylallyl-monophosphate (DMAP) as the prenyl group donor. Here, we report the in vivo and in vitro biosynthesis of prFMN and UbiD activation under aerobic conditions. For in vivo biosynthesis, we used newly discovered UbiX proteins from Salmonella typhimurium and Klebsiella pneumonia, which activated ferulic acid UbiD decarboxylase Fdc1 from Aspergillus niger under aerobic conditions (0.5-1.5 U/mg). For in vitro biosynthesis of prFMN and UbiD activation, we established a one-pot enzyme cascade system that uses prenol, polyphosphate, formate, and riboflavin as starting substrates and (re)generates DMAP, ATP, FMN and NADH. The system contains 6 different enzymes: prenol kinase, polyphosphate kinase, formate dehydrogenase, FMN reductase, riboflavin kinase and FMN prenyltransferase. Under aerobic conditions, this system showed up to 80% conversion of FMN to prFMN and generated active Fdc1 decarboxylase (0.2-1 U/mg). Thus, both systems represent robust approaches for in vivo and in vitro prFMN biosynthesis and UbiD activation under aerobic conditions. The developed FMN prenylation systems will facilitate the exploration and biochemical characterization of UbiD-like decarboxylases and their applications in biocatalysis. Please click Additional Files below to see the full abstract

    Hydrogen Production by a Chlamydomonas reinhardtii Strain with Inducible Expression of Photosystem II

    No full text
    Chlamydomonas reinhardtii cy6Nac2.49 is a genetically modified algal strain that activates photosynthesis in a cyclical manner, so that photosynthesis is not active constitutively in the presence of oxygen, but is turned on only in response to a metabolic trigger (anaerobiosis). Here, we further investigated hydrogen production by this strain comparing it with the parental wild-type strain under photoheterotrophic conditions in regular tris-acetate-phosphate (TAP) medium with a 10-h:14-h light/dark regime. Unlike the wild-type, whose level of H2 production remained low during illumination, H2 production in the mutant strain increased gradually with each subsequent light period, and by the final light period was significantly higher than the wild-type. The relatively low Photosystem II (PSII) activity of the mutant culture was shown by low fluorescence yield both in the dark (Fv/Fm) and in the light (δF/Fm’) periods. Measurement of oxygen evolution confirmed the low photosynthetic activity of the mutant cells, which gradually accumulated O2 to a lesser extent than the wild-type, thus allowing the mutant strain to maintain hydrogenase activity over a longer time period and to gradually accumulate H2 during periods of illumination. Therefore, controllable expression of PSII can be used to increase hydrogen production under nutrient replete conditions, thus avoiding many of the limitations associated with nutrient deprivation approaches sometimes used to promote hydrogen production

    A novel C-terminal degron identified in bacterial aldehyde decarbonylases using directed evolution

    No full text
    Abstract Background Aldehyde decarbonylases (ADs), which convert acyl aldehydes into alkanes, supply promising solution for producing alkanes from renewable feedstock. However the instability of ADs impedes their further application. Therefore, the current study aimed to investigate the degradation mechanism of ADs and engineer it towards high stability. Results Here, we describe the discovery of a degradation tag (degron) in the AD from marine cyanobacterium Prochlorococcus marinus using error-prone PCR-based directed evolution system. Bioinformatic analysis revealed that this C-terminal degron is common in bacterial ADs and identified a conserved C-terminal motif, RMSAYGLAAA, representing the AD degron (ADcon). Furthermore, we demonstrated that the ATP-dependent proteases ClpAP and Lon are involved in the degradation of AD-tagged proteins in E. coli, thereby limiting alkane production. Deletion or modification of the degron motif increased alkane production in vivo. Conclusion This work revealed the presence of a novel degron in bacterial ADs responsible for its instability. The in vivo experiments proved eliminating or modifying the degron could stabilize AD, thereby producing higher titers of alkanes

    Structural insights into hydrolytic defluorination of difluoroacetate by microbial fluoroacetate dehalogenases

    Get PDF
    Fluorine forms the strongest single bond to carbon with the highest bond dissociation energy among natural products. However, fluoroacetate dehalogenases (FADs) have been shown to hydrolyze this bond in fluoroacetate under mild reaction conditions. Furthermore, two recent studies demonstrated that the FAD RPA1163 from Rhodopseudomonas palustris can also accept bulkier substrates. In this study, we explored the substrate promiscuity of microbial FADs and their ability to defluorinate polyfluorinated organic acids. Enzymatic screening of eight purified dehalogenases with reported fluoroacetate defluorination activity revealed significant hydrolytic activity against difluoroacetate in three proteins. Product analysis using liquid chromatography-mass spectrometry identified glyoxylic acid as the final product of enzymatic DFA defluorination. The crystal structures of DAR3835 from Dechloromonas aromatica and NOS0089 from Nostoc sp. were determined in the apo-state along with the DAR3835 H274N glycolyl intermediate. Structure-based site-directed mutagenesis of DAR3835 demonstrated a key role for the catalytic triad and other active site residues in the defluorination of both fluoroacetate and difluoroacetate. Computational analysis of the dimer structures of DAR3835, NOS0089, and RPA1163 indicated the presence of one substrate access tunnel in each protomer. Moreover, protein-ligand docking simulations suggested similar catalytic mechanisms for the defluorination of both fluoroacetate and difluoroacetate, with difluoroacetate being defluorinated via two consecutive defluorination reactions producing glyoxylate as the final product. Thus, our findings provide molecular insights into substrate promiscuity and catalytic mechanism of FADs, which are promising biocatalysts for applications in synthetic chemistry and bioremediation of fluorochemicals
    corecore