126 research outputs found

    Mechanisms and Kinetics for Sorption of CO2 on Bicontinuous Mesoporous Silica Modified with n-Propylamine

    Get PDF
    We studied equilibrium adsorption and uptake kinetics and identified molecular species that formed during sorption of carbon dioxide on amine-modified silica. Bicontinuous silicas (AMS-6 and MCM-48) were postsynthetically modified with (3-aminopropyl)triethoxysilane or (3-aminopropyl)methyldiethoxysilane, and amine-modified AMS-6 adsorbed more CO(2) than did amine-modified MCM-48. By in situ FTIR spectroscopy, we showed that the amine groups reacted with CO(2) and formed ammonium carbamate ion pairs as well as carbamic acids under both dry and moist conditions. The carbamic acid was stabilized by hydrogen bonds, and ammonium carbamate ion pairs formed preferably on sorbents with high densities of amine groups. Under dry conditions, silylpropylcarbamate formed, slowly, by condensing carbamic acid and silanol groups. The ratio of ammonium carbamate ion pairs to silylpropylcarbamate was higher for samples with high amine contents than samples with low amine contents. Bicarbonates or carbonates did not form under dry or moist conditions. The uptake of CO(2) was enhanced in the presence of water, which was rationalized by the observed release of additional amine groups under these conditions and related formation of ammonium carbamate ion pairs. Distinct evidence for a fourth and irreversibly formed moiety was observed under sorption of CO(2) under dry conditions. Significant amounts of physisorbed, linear CO(2) were detected at relatively high partial pressures of CO(2), such that they could adsorb only after the reactive amine groups were consumed.authorCount :7</p

    Wave run-up on embayed beaches. Study case: Itapocorói Bay, Southern Brazil

    Get PDF
    This paper presents a new approach for estimating run-up on embayed beaches based on a study of the microtidal coast of Itapocorói Bay, Southern Brazil using the surf similarity parameter and wave height at break location. The four step methodology involved: 1) direct wave measurement (34 days), wave run-up measurement (19 days at 7 points within the bay), measurement of bathymetry and beach topography in the entire bay; 2) tests on available formulae to calculate wave run-up; 3) use of the SWAN spectral wave model to simulate wave parameters at breaking at each wave run-up measurement point and; 4) development of a new formula/approach to assess wave run-up on embayed beaches (in both exposed and protected areas). During the experiments the significant wave height varied from 0.5 m to 3.01 m, the mean wave period from 2.79 s to 7.76 s (the peak period varied between 2.95 s and 17.18 s), the mean wave direction from 72.5° to 141.9° (the peak direction varied from 39.2° to 169.8°) and the beach slope (tan β) from 0.041 to 0.201. The proposed formula is in good agreement with measured data for different wave conditions and varying degrees of protection. The analysis demonstrates that although R² varies from 0.52 to 0.75, the wave run-up distribution over the measurements agreed well with the proposed model, as shown by quantile-quantile analysis (R²=0.98 to 0.99). The errors observed in individual cases may be related to errors of measurements, modeling and to non-linear processes in the swash zone, such as infragavity waves.Griffith Sciences, Griffith Centre for Coastal ManagementFull Tex

    HIV Risks and Seroprevalence Among Mexican American Injection Drug Users in California

    Get PDF
    Latinos in the United States are an ethnically diverse group disproportionately affected by HIV/AIDS. We describe HIV seroprevalence, HIV risk behaviors and utilization of health services among Mexican American injection drug users (IDUs) in California (n = 286) and compare them to White (n = 830) and African American (n = 314) IDUs. Study participants were recruited from syringe exchange programs (n = 24) in California. HIV seroprevalence among Mexican Americans (0.5%) was dramatically lower than Whites (5%) and African Americans (8%). Mexican Americans reported fewer sex-related risks than Whites and African Americans though injection-related risks remained high. Compared to Whites, Mexican Americans were more likely to participate in drug treatment during a 6 month period (AOR 1.5, 95% CI 1.1, 2.0) but less likely to receive any health care (AOR 0.6, 95% CI 0.5, 0.8). Exploring cultural and structural factors among Mexican American IDUs may offer new insights into how to maintain low rates of HIV seroprevalence and reduce barriers to health care utilization

    The concept of transport capacity in geomorphology

    Get PDF
    The notion of sediment-transport capacity has been engrained in geomorphological and related literature for over 50 years, although its earliest roots date back explicitly to Gilbert in fluvial geomorphology in the 1870s and implicitly to eighteenth to nineteenth century developments in engineering. Despite cross fertilization between different process domains, there seem to have been independent inventions of the idea in aeolian geomorphology by Bagnold in the 1930s and in hillslope studies by Ellison in the 1940s. Here we review the invention and development of the idea of transport capacity in the fluvial, aeolian, coastal, hillslope, débris flow, and glacial process domains. As these various developments have occurred, different definitions have been used, which makes it both a difficult concept to test, and one that may lead to poor communications between those working in different domains of geomorphology. We argue that the original relation between the power of a flow and its ability to transport sediment can be challenged for three reasons. First, as sediment becomes entrained in a flow, the nature of the flow changes and so it is unreasonable to link the capacity of the water or wind only to the ability of the fluid to move sediment. Secondly, environmental sediment transport is complicated, and the range of processes involved in most movements means that simple relationships are unlikely to hold, not least because the movement of sediment often changes the substrate, which in turn affects the flow conditions. Thirdly, the inherently stochastic nature of sediment transport means that any capacity relationships do not scale either in time or in space. Consequently, new theories of sediment transport are needed to improve understanding and prediction and to guide measurement and management of all geomorphic systems

    Modeling rip current circulations and vorticity in a high-energy mesotidal-macrotidal environment

    Full text link
    International audienceIn June 2007 an intense 5 day field experiment was carried out at the mesotidal-macrotidal wave-dominated Biscarrosse Beach on a well-developed bar and rip morphology. Previous analysis of the field data elucidated the main characteristics of a tide-modulated and strongly evolving rip current driven by low- to high-energy shore-normal waves. Here we present a modeling strategy based on the vertically integrated and time-averaged momentum equations accounting for roller contribution that is applied to the Biscarrosse experiment. Wave and flow predictions in the surf zone improve significantly when using a spatially constant time-varying breaking parameter by Smith and Kraus (1990). The model correctly reproduces the main evolving behaviors of the rip current. An advection-diffusion equation governing the mean wave-driven current vertical vorticity is further derived from the momentum equations. Vertical vorticity is driven by a forcing term that depends on the breaking wave energy dissipation and on the wave propagation direction. Spatial gradients in depth-induced broken-wave energy dissipation therefore determine both the strength and the sign of the wave-driven circulation rotational nature. When applied to the Biscarrosse experiment, the vorticity efficiently predicts the main characteristics of the evolving rip current such as its width, cross-shore extension, and intensity. In addition, good correlations are found between the maximum rip current intensity and the deviation of the forcing term. Thus, we determine precisely the rotational component associated with the wave forcing which is less direct through the traditional radiation stress approach
    corecore