32 research outputs found
Secure Multiplication for Bitslice Higher-Order Masking: Optimisation and Comparison
In this paper, we optimize the performances and compare several recent masking schemes in bitslice on 32-bit arm devices, with a focus on multiplication. Our main conclusion is that efficiency (or randomness) gains always come at a cost, either in terms of composability or in terms of resistance against horizontal attacks. Our evaluations should therefore allow a designer to select a masking scheme based on implementation constraints and security requirements. They also highlight the increasing feasibility of (very) high-order masking that are offered by increasingly powerful embedded devices, with new opportunities of high-security devices in various contexts
Tornado: Automatic Generation of Probing-Secure Masked Bitsliced Implementations
International audienceCryptographic implementations deployed in real world devices often aim at (provable) security against the powerful class of side-channel attacks while keeping reasonable performances. Last year at Asiacrypt, a new formal verification tool named tightPROVE was put forward to exactly determine whether a masked implementation is secure in the well-deployed probing security model for any given security order t. Also recently, a compiler named Usuba was proposed to automatically generate bitsliced implementations of cryptographic primitives.This paper goes one step further in the security and performances achievements with a new automatic tool named Tornado. In a nutshell, from the high-level description of a cryptographic primitive, Tornado produces a functionally equivalent bitsliced masked implementation at any desired order proven secure in the probing model, but additionally in the so-called register probing model which much better fits the reality of software implementations. This framework is obtained by the integration of Usuba with tightPROVE+, which extends tightPROVE with the ability to verify the security of implementations in the register probing model and to fix them with inserting refresh gadgets at carefully chosen locations accordingly.We demonstrate Tornado on the lightweight cryptographic primitives selected to the second round of the NIST competition and which somehow claimed to be masking friendly. It advantageously displays performances of the resulting masked implementations for several masking orders and prove their security in the register probing model
Random Probing Security: Verification, Composition, Expansion and New Constructions
International audienceThe masking countermeasure is among the most powerful countermeasures to counteract side-channel attacks. Leakage models have been exhibited to theoretically reason on the security of such masked implementations. So far, the most widely used leakage model is the probing model defined by Ishai, Sahai, and Wagner at (CRYPTO 2003). While it is advantageously convenient for security proofs, it does not capture an adversary exploiting full leakage traces as, e.g., in horizontal attacks. Those attacks target the multiple manipulations of the same share to reduce noise and recover the corresponding value. To capture a wider class of attacks another model was introduced and is referred to as the random probing model. From a leakage parameter p, each wire of the circuit leaks its value with probability p. While this model much better reflects the physical reality of side channels, it requires more complex security proofs and does not yet come with practical constructions. In this paper, we define the first framework dedicated to the random probing model. We provide an automatic tool, called VRAPS, to quantify the random probing security of a circuit from its leakage probability. We also formalize a composition property for secure random probing gadgets and exhibit its relation to the strong non-interference (SNI) notion used in the context of probing security. We then revisit the expansion idea proposed by Ananth, Ishai, and Sahai (CRYPTO 2018) and introduce a compiler that builds a random probing secure circuit from small base gadgets achieving a random probing expandability property. We instantiate this compiler with small gadgets for which we verify the expected properties directly from our automatic tool. Our construction can tolerate a leakage probability up to 2 −8 , against 2 −25 for the previous construction, with a better asymptotic complexity
Complexity of configurators relative to integrations and field of application
Configurators are applied widely to automate the specification processes at companies. The literature describes industrial application of configurators supporting both sales and engineering processes, where configurators supporting the engineering processes are described more challenging. Moreover, configurators are commonly integrated to various IT systems within companies. Complexity of configurators is an important factor when it comes to performance, development and maintenance of the systems. Yet, a direct comparison of the complexity based on the different application and IT integrations is not addressed to great extent in the literature. Thus, this paper analyses the relationship of complexity of the configurators, which is based on parameters (rules and attributes), in terms of first different applications of configurators (sales and engineering), and second integrations to other IT systems. The research method adopted in the paper is based on a survey followed with interviews where the unit of analysis is based on operating configurators within a company
A1 Adenosine Receptor Partial Agonists and Allosteric Modulators: Advancing Toward the Clinic?
This opinion article discusses the most interesting results obtained in preclinical and clinical studies using A1AR partial agonists and positive allosteric modulators
Targeting A3 and A2A adenosine receptors in the fight against cancer
Introduction: There is a vicious cycle of tumor hypoxia, high adenosine levels, immune suppression and cancer growth that involves the use of adenosine receptor ligands in tumors. After several years of research, the candidates emerging as promising new anticancer drugs are A3 adenosine receptor agonists and A2A receptor antagonists. Areas covered: The authors give an updated overview of the field related to A3 receptor agonists and A2A receptor antagonists in cancer and propose their perspectives on the status of these compounds in oncology. The rationale for the modulation of adenosine receptors in cancer is addressed, starting from the first in vitro evidence of their efficacy up to the animal and clinical studies. Expert opinion: A3 and A2A receptors are attractive targets in oncologic therapy due to their involvement in cancer progression and immune-resistance. Of relevance, the A3 subtype is also a tumor marker to be used in a personalized drug treatment program while the A2A receptor, playing a non-redundant role in immunomodulation, may be blocked in combination with checkpoint inhibitors to improve their efficacy. The future will reveal how successful this approach is in the fight against cancer
Pulsed electromagnetic field and relief of hypoxia-induced neuronal cell death: The signaling pathway
Low-energy low-frequency pulsed electromagnetic fields (PEMFs) exert several protective effects, such as the regulation of kinases, transcription factors as well as cell viability in both central and peripheral biological systems. However, it is not clear on which bases they affect neuroprotection and the mechanism responsible is yet unknown. In this study, we have characterized in nerve growth factor-differentiated pheochromocytoma PC12 cells injured with hypoxia: (i) the effects of PEMF exposure on cell vitality; (ii) the protective pathways activated by PEMFs to relief neuronal cell death, including adenylyl cyclase, phospholipase C, protein kinase C epsilon and delta, p38, ERK1/2, JNK1/2 mitogen-activated protein kinases, Akt and caspase-3; (iii) the regulation by PEMFs of prosurvival heat-shock proteins of 70 (HSP70), cAMP response element-binding protein (CREB), brain-derived neurotrophic factor (BDNF), and Bcl-2 family proteins. The results obtained in this study show a protective effect of PEMFs that are able to reduce neuronal cell death induced by hypoxia by modulating p38, HSP70, CREB, BDNF, and Bcl-2 family proteins. Specifically, we found a rapid activation (30 min) of p38 kinase cascade, which in turns enrolles HSP70 survival chaperone molecule, resulting in a significant CREB phosphorylation increase (24 hr). In this cascade, later (48 hr), BDNF and the antiapoptotic pathway regulated by the Bcl-2 family of proteins are recruited by PEMFs to enhance neuronal survival. This study paves the way to elucidate the mechanisms triggered by PEMFs to act as a new neuroprotective approach to treat cerebral ischemia by reducing neuronal cell death
Signaling pathways involved in anti-inflammatory effects of Pulsed Electromagnetic Field in microglial cells
Literature studies suggest important protective effects of low-frequency, low-energy pulsed electromagnetic fields (PEMFs) on inflammatory pathways affecting joint and cerebral diseases. However, it is not clear on which bases they affect neuroprotection and the mechanism responsible is yet unknown. Therefore the aim of this study was to identify the molecular targets of PEMFs anti-neuroinflammatory action. The effects of PEMF exposure in cytokine production by lipopolysaccharide (LPS)-activated N9 microglial cells as well as the pathways involved, including adenylyl cyclase (AC), phospholipase C (PLC), protein kinase C epsilon (PKC-ε) and delta (PKC-δ), p38, ERK1/2, JNK1/2 mitogen activated protein kinases (MAPK), Akt and caspase 1, were investigated. In addition, the ability of PEMFs to modulate ROS generation, cell invasion and phagocytosis, was addressed. PEMFs reduced the LPS-increased production of TNF-α and IL-1β in N9 cells, through a pathway involving JNK1/2. Furthermore, they decreased the LPS-induced release of IL-6, by a mechanism not dependent on AC, PLC, PKC-ε, PKC-δ, p38, ERK1/2, JNK1/2, Akt and caspase 1. Importantly, a significant effect of PEMFs in the reduction of crucial cell functions specific of microglia like ROS generation, cell invasion and phagocytosis was found. PEMFs inhibit neuroinflammation in N9 cells through a mechanism involving, at least in part, the activation of JNK MAPK signalling pathway and may be relevant to treat a variety of diseases characterized by neuroinflammation
Biological effects on μ-receptors affinity and selectivity of aryl propenyl chain structural modification on diazatricyclodecane derivatives
Opioid analgesics are clinically used to relieve severe pain in acute postoperative and cancer pain, and also in the long term in chronic pain. The analgesic action is mediated by μ-, δ-, and κ-receptors, but currently, with few exceptions for k-agonists, μ-agonists are the only ones used in therapy. Previously synthesized compounds with diazotricyclodecane cores (DTDs) have shown their effectiveness in binding opioid receptors. Fourteen novel diazatricyclodecanes belonging to the 9-propionyl-10-substituted-9,10-diazatricyclo[4.2.1.12,5]decane (compounds 20–23, 53, 57 and 59) and 2-propionyl-7-substituted-2,7-diazatricyclo[4.4.0.03,8]decane (compounds 24–27, 54, 58 and 60) series, respectively, have been synthesized and their ability to bind to the opioid μ-, δ-and κ-receptors was evaluated. Five of these derivatives, compounds 20, 21, 24, 26 and 53, showed μ-affinity in the nanomolar range with a negligible affinity towards δ-and κ-receptors and high μ-receptor selectivity. The synthesized compounds showed μ-receptor selectivity higher than those of previously reported methylarylcinnamyl analogs