7 research outputs found
Recommended from our members
Fatigue behavior and recommended design rules for an automotive composite
Fatigue curves (stress vs cycles to failure) were generated under a variety of conditions (temperatures, fluid environments, mean stresses, block loadings) for a candidate automotive structural composite. The results were used to (1) develop observations regarding basic fatigue behavioral characteristics and (2) establish fatigue design rules. The composite was a structural reaction injection-molded polyurethane reinforced with continuous strand, swirl-mat E-glass fibers. Tensile fatigue tests on specimens from a single plaque at {minus}40 F, room temperature, and 250 F provided the basic behavioral characteristics. It was found that when stress was normalized by the at-temperature ultimate tensile strength, the fatigue curves at the three temperatures collapsed into a single master curve. An assessment of the individual stress-strain loops throughout each test showed a progressive loss in stiffness and an increase in permanent strain, both of which are indicative of increasing damage. Fatigue tests on specimens from several plaques were used to develop a design fatigue curve, which was established by using a reduction factor of 20 on average cycles to failure. This factor assures that the stiffness loss during the design life is no greater than 10 percent. Fatigue reduction factors were established to account for various fluids. Reversed stress fatigue tests allowed a mean stress rule to be validated, and block loading tests were used to demonstrate the adequacy of Miner`s rule for cumulative fatigue damage
Recommended from our members
Static properties and multiaxial strength criterion for design of composite automotive structures
The Durability of Lightweight Composite Structures Project was established at Oak Ridge National Laboratory (ORNL) by the US Department of Energy to provide the experimentally-based, durability-driven design guidelines necessary to assure long-term structural integrity of automotive composite components. The initial focus of the ORNL Durability Project was on one representative reference material -- an isocyanurate (polyurethane) reinforced with continuous strand, swirl-mat E-glass. The present paper describes tensile, compressive, flexure, and shear testing and results for the reference composite. Behavioral trends and proportional limit are established for both tension and compression. Damage development due to tensile loading, strain rate effects, and effects of temperature are discussed. Furthermore, effects on static properties of various fluids, including water at room and elevated temperatures, salt water, antifreeze, windshield washer fluid, used motor oil, battery acid, gasoline, and brake fluid, were investigated. Effects of prior loading were evaluated as well. Finally, the effect of multiaxial loading on strength was determined, and the maximum shear strength criterion was identified for design
Recommended from our members
Reduction factors for creep strength and fatigue life of modified 9 Cr-1 Mo steel weldments
The provisions of ASME B PV Code Case N-47 currently include reduction factors for creep strength and fatigue life of weldments. To provide experimental confirmation of such factors for modified 9 Cr-1 Mo steel, tests of tubular specimens were conducted at 538{degree}C (1000{degree}F). Three creep-rupture specimens with longitudinal welds were tested in tension; and, of three with circumferential welds, two were tested in tension and one in torsion. In each specimen with a circumferential weld, a nonuniform axial distribution of strain was easily visible. The test results were compared to an existing empirical model of creep-rupture life. For the torsion test, the comparison was based on a definition of equivalent normal stress recently adopted in Code Case N-47. Some 27 fatigue specimens, with longitudinal, circumferential, or no welds, were tested under axial or torsional strain control. In specimens with welds, fatigue cracking initiated at fusion lines. In axial tests cracks grew in the circumferential direction, and in torsional tests cracks grew along fusion lines. The test results were compared to empirical models of fatigue life based on two definition of equivalent normal strain range. The results have provided some needed confirmation of the reduction factors for creep strength and fatigue life of modified 9 Cr-1 Mo steel weldments currently under consideration by ASME Code committees. 8 refs., 5 figs
Recommended from our members
Recommended Minimum Test Requirements and Test Methods for Assessing Durability of Random-Glass-Fiber Composites
This report provides recommended minimum test requirements are suggested test methods for establishing the durability properties and characteristics of candidate random-glass-fiber polymeric composites for automotive structural applications. The recommendations and suggestions are based on experience and results developed at Oak Ridge National Laboratory (ORNL) under a US Department of Energy Advanced Automotive Materials project entitled ''Durability of Lightweight Composite Structures,'' which is closely coordinated with the Automotive Composites Consortium. The report is intended as an aid to suppliers offering new structural composites for automotive applications and to testing organizations that are called on to characterize the composites
Recommended from our members
Durability-Based Design Criteria for a Chopped-Glass-Fiber Automotive Structural Composite
This report provides recommended durability-based design criteria for a chopped-glass-fiber reinforced polymeric composite for automotive structural applications. The criteria closely follow the framework of an earlier criteria document for a continuous-strand-mat (CSM) glass-fiber reference composite. Together these design criteria demonstrate a framework that can be adapted for future random-glass-fiber composites for automotive structural applications
Recommended from our members
Durability-Based Design Guide for an Automotive Structural Composite: Part 2. Background Data and Models
This background report is a companion to the document entitled ''Durability-Based Design Criteria for an Automotive Structural Composite: Part 1. Design Rules'' (ORNL-6930). The rules and the supporting material characterization and modeling efforts described here are the result of a U.S. Department of Energy Advanced Automotive Materials project entitled ''Durability of Lightweight Composite Structures.'' The overall goal of the project is to develop experimentally based, durability-driven design guidelines for automotive structural composites. The project is closely coordinated with the Automotive Composites Consortium (ACC). The initial reference material addressed by the rules and this background report was chosen and supplied by ACC. The material is a structural reaction injection-molded isocyanurate (urethane), reinforced with continuous-strand, swirl-mat, E-glass fibers. This report consists of 16 position papers, each summarizing the observations and results of a key area of investigation carried out to provide the basis for the durability-based design guide. The durability issues addressed include the effects of cyclic and sustained loadings, temperature, automotive fluids, vibrations, and low-energy impacts (e.g., tool drops and roadway kickups) on deformation, strength, and stiffness. The position papers cover these durability issues. Topics include (1) tensile, compressive, shear, and flexural properties; (2) creep and creep rupture; (3) cyclic fatigue; (4) the effects of temperature, environment, and prior loadings; (5) a multiaxial strength criterion; (6) impact damage and damage tolerance design; (7) stress concentrations; (8) a damage-based predictive model for time-dependent deformations; (9) confirmatory subscale component tests; and (10) damage development and growth observations