298 research outputs found
Limits on Non-Linear Electrodynamics
In this paper we set a framework in which experiments whose goal is to test
QED predictions can be used in a more general way to test non-linear
electrodynamics (NLED) which contains low-energy QED as a special case. We
review some of these experiments and we establish limits on the different free
parameters by generalizing QED predictions in the framework of NLED. We finally
discuss the implications of these limits on bound systems and isolated charged
particles for which QED has been widely and successfully tested
Characterization of the Vacuum Birefringence Polarimeter at BMV: Dynamical Cavity Mirror Birefringence
We present the current status and outlook of the optical characterization of
the polarimeter at the Bir\'{e}fringence Magn\'etique du Vide (BMV) experiment.
BMV is a polarimetric search for the QED predicted anisotropy of vacuum in the
presence of external electromagnetic fields. The main challenge faced in this
fundamental test is the measurement of polarization ellipticity on the order of
induced in linearly polarized laser field per pass through a
magnetic field having an amplitude and length
. This challenge is addressed by
understanding the noise sources in precision cavity-enhanced polarimetry. In
this paper we discuss the first investigation of dynamical birefringence in the
signal-enhancing cavity as a result of cavity mirror motion.Comment: To appear in the 2019 CPEM special issue of IEEE Transactions on
Instrumentation and Measuremen
Optical spectroscopy of a microsized Rb vapour sample in magnetic fields up to 58 tesla
We use a magnetometer probe based on the Zeeman shift of the rubidium
resonant optical transition to explore the atomic magnetic response for a wide
range of field values. We record optical spectra for fields from few tesla up
to 60 tesla, the limit of the coil producing the magnetic field. The atomic
absorption is detected by the fluorescence emissions from a very small region
with a submillimiter size. We investigate a wide range of magnetic interactions
from the hyperfine Paschen-Back regime to the fine one, and the transitions
between them. The magnetic field measurement is based on the rubidium
absorption itself. The rubidium spectroscopic constants were previously
measured with high precision, except the excited state Land\'e -factor that
we derive from the position of the absorption lines in the transition to the
fine Paschen-Back regime. Our spectroscopic investigation, even if limited by
the Doppler broadening of the absorption lines, measures the field with a 20
ppm uncertainty at the explored high magnetic fields. Its accuracy is limited
to 75 ppm by the excited state Land\'e -factor determination
Noise characterization for resonantly-enhanced polarimetric vacuum magnetic-birefringence experiments
In this work we present data characterizing the sensitivity of the
Bir\'{e}fringence Magnetique du Vide (BMV) instrument. BMV is an experiment
attempting to measure vacuum magnetic birefringence (VMB) via the measurement
of an ellipticity induced in a linearly polarized laser field propagating
through a birefringent region of vacuum in the presence of an external magnetic
field. Correlated measurements of laser noise alongside the measurement in the
main detection channel allow us to separate measured sensing noise from the
inherent birefringence noise of the apparatus. To this end we model different
sources of sensing noise for cavity-enhanced polarimetry experiments, such as
BMV. Our goal is to determine the main sources of noise, clarifying the
limiting factors of such an apparatus. We find our noise models are compatible
with the measured sensitivity of BMV. In this context we compare the phase
sensitivity of separate-arm interferometers to that of a polarimetry apparatus
for the discussion of current and future VMB measurements
Vacuum magnetic linear birefringence using pulsed fields: the BMV experiment
We present the current status of the BMV experiment. Our apparatus is based
on an up-to-date resonant optical cavity coupled to a transverse magnetic
field. We detail our data acquisition and analysis procedure which takes into
account the symmetry properties of the raw data with respect to the orientation
of the magnetic field and the sign of the cavity birefringence. The measurement
result of the vacuum magnetic linear birefringence k_\mathrm{CM}8 \times 10^{-21}^{-2}3\sigma$ confidence level
Agriculture
Entrée d'encyclopédie. Voir sur mon site:http://vbat.org/spip.php?article75Introduction:From the Latin agricultura (ager, field and cultura, cultivation), agriculture refers to the processes by which food is grown and harvested. It also pertains to the sector of the economy dedicated to harvested foods.Soil cultivation for the production of crops began in the ancient Near East around 10,000 BCE (the Neolithic Revolution), and agriculture is the base of the past and current civilizations of the region. In 1996, 50 percent of the Middle East's population still lived in rural areas. Through the centuries, various rural cultures have developed, and they have balanced environmental and social factors and introduced for example various collective water-management systems. Nevertheless, in terms of food, the Middle East and North Africa (MENA) has become the least self-sufficient of the world's major populated regions.Introduction :Du latin agricultura (ager, champs et cultura, culture), l'agriculture réfÚre au processus par lesquels des aliments sont cultivés et récoltés. Cela concerne aussi le secteur de l'économie dédié à l'alimentation récoltée.La culture du sol pour la production de récolte commença dans l'ancien Proche-Orient autour de 10 000 avt-JC (la révolution néolithique) et l'agriculture est à la fondation des civilisations passées et contemporaines de la région. En 1996, 50 pour cent de la population du Moyen-Orient vivait encore en zone rurale. à travers les siÚcles, différentes cultures rurales se sont développées et elles ont constamment ajustés des facteurs environnementaux et sociaux et introduit par exemple différents systÚmes de gestion collective de l'eau. Néanmoins, en terme d'alimentation, le Moyen-Orient et l'Afrique du Nord sont devenus les moins autosuffisants des régions les plus peuplées du globe
Bloch oscillations of ultracold atoms: a tool for a metrological determination of
We use Bloch oscillations in a horizontal moving standing wave to transfer a
large number of photon recoils to atoms with a high efficiency (99.5% per
cycle). By measuring the photon recoil of , using velocity selective
Raman transitions to select a subrecoil velocity class and to measure the final
accelerated velocity class, we have determined with a relative
precision of 0.4 ppm. To exploit the high momentum transfer efficiency of our
method, we are developing a vertical standing wave set-up. This will allow us
to measure better than and hence the fine structure
constant with an uncertainty close to the most accurate value coming
from the () determination
Inverse Cotton-Mouton effect of the Vacuum and of atomic systems
In this letter we calculate the Inverse Cotton-Mouton Effect (ICME) for the
vacuum following the predictions of Quantum ElectroDynamics. We compare the
value of this effect for the vacuum with the one expected for atomic systems.
We finally show that ICME could be measured for the first time for noble gases
using state-of-the-art laser systems and for the quantum vacuum with
near-future laser facilities like ELI and HiPER, providing in particular a test
of the nonlinear behaviour of quantum vacuum at intensities below the Schwinger
limit of 4.5x10^33 W/m^2.Comment: Submitted to EP
Observation of the Inverse Cotton-Mouton Effect
We report the observation of the Inverse Cotton-Mouton Effect (ICME) i.e. a
magnetization induced in a medium by non resonant linearly polarized light
propagating in the presence of a transverse magnetic field. We present a
detailed study of the ICME in a TGG crystal showing the dependence of the
measured effect on the light intensity, the optical polarization, and on the
external magnetic field. We derive a relation between the Cotton-Mouton and
Inverse Cotton-Mouton effects that is roughly in agreement with existing
experimental data. Our results open the way to applications of the ICME in
optical devices
No light shining through a wall : new results from a photoregeneration experiment
Recently, axion-like particle search has received renewed interest. In
particular, several groups have started ``light shining through a wall''
experiments based on magnetic field and laser both continuous, which is very
demanding in terms of detector background. We present here the 2 limits
obtained so far with our novel set-up consisting of a pulsed magnetic field and
a pulsed laser. In particular, we have found that the axion-like particle two
photons inverse coupling constant is GeV provided that the
particle mass 1 meV. Our results definitively invalidate
the axion interpretation of the original PVLAS optical measurements with a
confidence level greater than 99.9%.Comment: Version that will appear in Physical Review Letters, Vol. 99, n. 18,
(2 Nov 2007
- âŠ