14 research outputs found
Perturbations in a Bouncing Brane Model
The question of how perturbations evolve through a bounce in the Cyclic and
Ekpyrotic models of the Universe is still a matter of ongoing debate. In this
report we show that the collision between boundary branes is in most cases
singular even in the full 5-D formalism, and that first order perturbation
theory breaks down for at least one perturbation variable. Only in the case
that the boundary branes approach each other with constant velocity shortly
before the bounce, can a consistent, non singular solution be found. It is then
possible to follow the perturbations explicitly until the actual collision. In
this case, we find that if a scale invariant spectrum developed on the hidden
brane, it will get transferred to the visible brane during the bounce.Comment: 15 pages, minor modifications, a few typos correcte
The Cosmology of Massless String Modes
We consider the spacetime dynamics of a gas of closed strings in the context
of General Relativity in a background of arbitrary spatial dimensions. Our
motivation is primarily late time String Gas Cosmology, where such a spacetime
picture has to emerge after the dilaton has stabilized. We find that after
accounting for the thermodynamics of a gas of strings, only string modes which
are massless at the self-dual radius are relevant, and that they lead to a
dynamics which is qualitatively different from that induced by the modes
usually considered in the literature. In the context of an ansatz with three
large spatial dimensions and an arbitrary number of small extra dimensions, we
obtain isotropic stabilization of these extra dimensions at the self-dual
radius. This stabilization occurs for fixed dilaton, and is induced by the
special string states we focus on. The three large dimensions undergo a regular
Friedmann-Robertson-Walker expansion. We also show that this framework for
late-time cosmology is consistent with observational bounds.Comment: 15 pages, no figures, references added (again
String Gas Cosmology and Structure Formation
It has recently been shown that a Hagedorn phase of string gas cosmology may
provide a causal mechanism for generating a nearly scale-invariant spectrum of
scalar metric fluctuations, without the need for an intervening period of de
Sitter expansion. A distinctive signature of this structure formation scenario
would be a slight blue tilt of the spectrum of gravitational waves. In this
paper we give more details of the computations leading to these results.Comment: 12 pages, 3 figure
Moduli Stabilization in Brane Gas Cosmology with Superpotentials
In the context of brane gas cosmology in superstring theory, we show why it
is impossible to simultaneously stabilize the dilaton and the radion with a
general gas of strings (including massless modes) and D-branes. Although this
requires invoking a different mechanism to stabilize these moduli fields, we
find that the brane gas can still play a crucial role in the early universe in
assisting moduli stabilization. We show that a modest energy density of
specific types of brane gas can solve the overshoot problem that typically
afflicts potentials arising from gaugino condensation.Comment: minor changes to match the journal versio
The Phantom Bounce: A New Oscillating Cosmology
An oscillating universe cycles through a series of expansions and
contractions. We propose a model in which ``phantom'' energy with
grows rapidly and dominates the late-time expanding phase. The universe's
energy density is so large that the effects of quantum gravity are important at
both the beginning and the end of each expansion (or contraction). The bounce
can be caused by high energy modifications to the Friedmann equation, which
make the cosmology nonsingular. The classic black hole overproduction of
oscillating universes is resolved due to their destruction by the phantom
energy.Comment: Four pages, one figure. V3: version to appear in JCA
Dynamical decompactification from brane gases in eleven-dimensional supergravity
Brane gas cosmology provides a dynamical decompactification mechanism that
could account for the number of spacetime dimensions we observe today. In this
work we discuss this scenario taking into account the full bosonic sector of
eleven-dimensional supergravity. We find new cosmological solutions that can
dynamically explain the existence of three large spatial dimensions
characterised by an universal asymptotic scaling behaviour and a large number
of initially unwrapped dimensions. This type of solutions enlarge the possible
initial conditions of the Universe in the Hagedorn phase and consequently can
potentially increase the probability of dynamical decompactification from
anisotropically wrapped backgrounds.Comment: 8 figures, JHEP3 styl
Volume Stabilization and Acceleration in Brane Gas Cosmology
We investigate toy cosmological models in (1+m+p)-dimensions with gas of
p-branes wrapping over p-compact dimensions. In addition to winding modes, we
consider the effects of momentum modes corresponding to small vibrations of
branes and find that the extra dimensions are dynamically stabilized while the
others expand. Adding matter, the compact volume may grow slowly depending on
the equation of state. We also obtain solutions with winding and momentum modes
where the observed space undergoes accelerated expansion.Comment: 20 pages, 3 figures, v2: comments and references added, to appear in
JCA
String windings in the early universe
We study string dynamics in the early universe. Our motivation is the
proposal of Brandenberger and Vafa, that string winding modes may play a key
role in decompactifying three spatial dimensions. We model the universe as a
homogeneous but anisotropic 9-torus filled with a gas of excited strings. We
adopt initial conditions which fix the dilaton and the volume of the torus, but
otherwise assume all states are equally likely. We study the evolution of the
system both analytically and numerically to determine the late-time behavior.
We find that, although dynamical evolution can indeed lead to three large
spatial dimensions, such an outcome is not statistically favored.Comment: 26 pages, LaTeX, 4 eps figure
Effective Field Theory Approach to String Gas Cosmology
We derive the 4D low energy effective field theory for a closed string gas on
a time dependent FRW background. We examine the solutions and find that
although the Brandenberger-Vafa mechanism at late times no longer leads to
radion stabilization, the radion rolls slowly enough that the scenario is still
of interest. In particular, we find a simple example of the string inspired
dark matter recently proposed by Gubser and Peebles.Comment: 19 pages, 2 figures, comments adde
Unconventional Cosmology
I review two cosmological paradigms which are alternative to the current
inflationary scenario. The first alternative is the "matter bounce", a
non-singular bouncing cosmology with a matter-dominated phase of contraction.
The second is an "emergent" scenario, which can be implemented in the context
of "string gas cosmology". I will compare these scenarios with the inflationary
one and demonstrate that all three lead to an approximately scale-invariant
spectrum of cosmological perturbations.Comment: 45 pages, 10 figures; invited lectures at the 6th Aegean Summer
School "Quantum Gravity and Quantum Cosmology", Chora, Naxos, Greece, Sept.
12 - 17 2012, to be publ. in the proceedings; these lecture notes form an
updated version of arXiv:1003.1745 and arXiv:1103.227