8 research outputs found

    Current Status of Human Adipose–Derived Stem Cells: Differentiation into Hepatocyte-Like Cells

    Get PDF
    The shortage of human organ donors and the low cell quality of available liver tissues represent major obstacles for the clinical application of orthotropic liver transplantation and hepatocyte transplantation, respectively. Therefore, worldwide research groups are investigating alternative extrahepatic cell sources. Recent in vitro studies have demonstrated that mesenchymal stem cells (MSCs) from various sources, including human bone marrow, adipose tissue, and umbilical cord, can be differentiated into hepatocyte-like cells when appropriate conditions are used. In particular, interest exists for human adipose–derived stems cells (hASCs) as an attractive cell source for generating hepatocyte-like cells. The hASCs are multipotent MSCs that reside in adipose tissue, with the ability to self-renew and differentiate into multiple cell lineages. Moreover, these cells can secrete multiple growth factors and cytokines that exert beneficial effects on organ or tissue injury. In this review, we will not only present recent data regarding hASC biology, their isolation, and differentiation capability towards hepatocytes, but also the potential application of hASC-derived hepatocytes to study drug toxicity. Additionally, this review will discuss the therapeutic potential of hASCs as undifferentiated cells in liver regeneration

    Evaluation of Medicinal Plant Hepatotoxicity in Co-cultures of Hepatocytes and Monocytes

    Get PDF
    Non-parenchymal cells might play an important role in the modulation of xenobiotic metabolism in liver and its pharmacological and toxicological consequences. Therefore, the role of cell-to-cell interactions in herbal induced liver toxicity was investigated in monocultures of cells from the human hepatocyte cell line (HepG2) and in co-cultures of cells from the HepG2 cell line and cells from the human monocyte cell line (THP1). Cells were treated with various concentrations (1–500 µg ml(−1)) of extracts of Pistacia palaestina, Juglans regia and Quercus ithaburensis for 24 h. Extracts from Cleome droserifolia, a known toxic plant, were taken as positive control. In the co-culture system, toxic effects were observed after exposure to extracts of Pistacia palestina and C. droserifolia. These two extracts significantly reduced by cell viability as measured the MTT test and the LDH assay. Whereas in hepatocyte cultures, only extracts of C. droserifolia were found to affect the cell viability. The production levels of albumin from hepatocytes were not affected by treatment with plant extracts in both culture systems. It seems that the observed reduction in cell viability after exposure to extracts of P. palestina in co-cultures but not in monocultures is a result of monocyte-derived factors. The use of liver cell co-cultures is therefore a useful approach to investigate the influence of intercellular communication on xenobiotic metabolism in liver

    The effect of natural fibres template on the chemical and structural properties of Biphasic Calcium Phosphate scaffold

    No full text
    Porous biphasic bioceramics that contain hydroxyapatite and tricalcium phosphate were synthesized in this study using luffa cylindrical fibres (LCF) as the template. In addition to improving the pore structure, using this template led to a chemical coating of the pores´ internal surfaces by important minerals such as magnesium and phosphorous from the LCF residue. Evaluation of our preliminary results suggests promising applications in bone tissue engineering. The synthesized porous bioceramics were characterized in view of their microstructural, physical, and in vitro features. They showed a trimodal pore system comprising a nano-pore network, smaller macropore with diameters of 5 to 100 μ m, and cylindrical macropores with diameters from 100 to 400 μ m; and 75% of interconnected porosity was confirmed by Mercury intrusion porosimetry and SEM images. Enhanced cell adhesion of the internal pore surfaces generated long and extended cells inside the macropores. SEM images show how the cells adhered to bioceramic surfaces and developed cytoplasmic extensions. Their proliferation in vitro demonstrates that the scaffold architecture and mineral composition are suitable for mesenchymal stem cell seeding and growth

    Mesoderm-derived stem cells: the link between the transcriptome and their differentiation potential.

    No full text
    Human adult stem cells (hASCs) have become an attractive source for autologous cell transplantation, tissue engineering, developmental biology, and the generation of human-based alternative in vitro models. Among the 3 germ cell layers, the mesoderm is the origin of today's most widely used and characterized hASC populations. A variety of isolated nonhematopoietic mesoderm-derived stem cell populations exist, and all of them show important differences in terms of function, efficacy, and differentiation potential both in vivo and in vitro. To better understand whether the intrinsic properties of these cells contribute to the overall differentiation potential of hASCs, we compared the global gene expression profiles of 4 mesoderm-derived stem cell populations: human adipose tissue-derived stromal cells, human bone marrow-derived stromal cells (hBMSCs), human (fore)skin-derived precursor cells (hSKPs), and human Wharton's jelly-derived mesenchymal stem cells (hWJs). Significant differences in gene expression profiles were detected between distinct stem cell types. hSKPs predominantly expressed genes involved in neurogenesis, skin, and bone development, whereas hWJs and, to some extent, hBMSCs showed an increased expression of genes involved in cardiovascular and liver development. Interestingly, the observed differential gene expression of distinct hASCs could be linked to existing differentiation data in which hASCs were differentiated toward specific cell types. As such, our data suggest that the intrinsic gene expression of the undifferentiated stem cells has an important impact on their overall differentiation potential as well as their application in stem cell-based research. Yet, the factors that define these intrinsic properties remain to be determined.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Successful isolation of liver progenitor cells by aldehyde dehydrogenase activity in naïve mice.

    No full text
    The role of progenitor cells in liver repair and fibrosis has been extensively described, but their purification remains a challenge, hampering their characterization and use in regenerative medicine. To address this issue, we developed an easy and reproducible liver progenitor cell (LPC) isolation strategy based on aldehyde dehydrogenase (ALDH) activity, a common feature shared by many progenitor cells. We demonstrate that a subset of nonparenchymal mouse liver cells displays high levels of ALDH activity, allowing the isolation of these cells by fluorescence-activated cell sorting. Immunocytochemistry and qPCR analyses on freshly isolated ALDH(+) cells reveal an enrichment in cells expressing liver stem cell markers such as EpCAM, CK19, CD133, and Sox9. In culture, the ALDH(+) population can give rise to functional hepatocyte-like cells as illustrated by albumin and urea secretion and cytochrome P450 activity. ALDH1A1 expression can be detected in canals of Hering and bile duct epithelial cells and is increased on liver injury. Finally, we showed that the isolation and differentiation toward hepatocyte-like cells of LPCs with high ALDH activity is also successfully applicable to human liver samples. CONCLUSION: High ALDH activity is a feature of LPCs that can be taken advantage of to isolate these cells from untreated mouse as well as human liver tissues. This novel protocol is practically relevant, because it provides an easy and nontoxic method to isolate liver stem cells from normal tissue for potential therapeutic purposes
    corecore