3,743 research outputs found

    Z-prime Gauge Bosons at the Tevatron

    Full text link
    We study the discovery potential of the Tevatron for a Z-prime gauge boson. We introduce a parametrization of the Z-prime signal which provides a convenient bridge between collider searches and specific Z-prime models. The cross section for p pbar -> Z-prime X -> l^+ l^- X depends primarily on the Z-prime mass and the Z-prime decay branching fraction into leptons times the average square coupling to up and down quarks. If the quark and lepton masses are generated as in the standard model, then the Z-prime bosons accessible at the Tevatron must couple to fermions proportionally to a linear combination of baryon and lepton numbers in order to avoid the limits on Z--Z-prime mixing. More generally, we present several families of U(1) extensions of the standard model that include as special cases many of the Z-prime models discussed in the literature. Typically, the CDF and D0 experiments are expected to probe Z-prime-fermion couplings down to 0.1 for Z-prime masses in the 500--800 GeV range, which in various models would substantially improve the limits set by the LEP experiments.Comment: 34 pages, 13 figure

    D-Terms, Unification, and the Higgs Mass

    Full text link
    We study gauge extensions of the MSSM that contain non-decoupling D-terms, which contribute to the Higgs boson mass. These models naturally maintain gauge coupling unification and raise the Higgs mass without fine-tuning. Unification constrains the structure of the gauge extensions, limiting the Higgs mass in these models to roughly less than 150 GeV. The D-terms contribute to the Higgs mass only if the extended gauge symmetry is broken at energies of a few TeV, leading to new heavy gauge bosons in this mass range.Comment: 30+1 pages, 7 figure

    Single Queue Attended by Alternative Servers with Changeover Times

    Get PDF
    A single queue is serviced by two servers alternately, in alternate busy periods. A changeover time is required whenever the servers are replaced. In this model, the changeover time of a server is initiated as soon as one server completes the services of the units waiting before him namely at the end of his busy period. It may be noted that the empty state of the system is never reached. A comparison of this model with the model with empty state has been done

    Structural studies of phosphorus induced dimers on Si(001)

    Full text link
    Renewed focus on the P-Si system due to its potential application in quantum computing and self-directed growth of molecular wires, has led us to study structural changes induced by P upon placement on Si(001)-p(2×1)p(2\times 1). Using first-principles density functional theory (DFT) based pseudopotential method, we have performed calculations for P-Si(001) system, starting from an isolated P atom on the surface, and systematically increasing the coverage up to a full monolayer. An isolated P atom can favorably be placed on an {\bf M} site between two atoms of adjacent Si dimers belonging to the same Si dimer row. But being incorporated in the surface is even more energetically beneficial due to the participation of the {\bf M} site as a receptor for the ejected Si. Our calculations show that up to 1/8 monolayer coverage, hetero-dimer structure resulting from replacement of surface Si atoms with P is energetically favorable. Recently observed zig-zag features in STM are found to be consistent with this replacement process. As coverage increases, the hetero-dimers give way to P-P ortho-dimers on the Si dimer rows. This behavior is similar to that of Si-Si d-dimers but are to be contrasted with the Al-Al dimers, which are found between adjacent Si dimers rows and in a para-dimer arrangement. Unlike Al-Si system P-Si does not show any para to ortho transition. For both systems, the surface reconstruction is lifted at about one monolayer coverage. These calculations help us in understanding the experimental data obtained using scanning tunneling microscope.Comment: To appear in PR
    corecore