164 research outputs found

    Analyzing the Behavior of Visual Question Answering Models

    Full text link
    Recently, a number of deep-learning based models have been proposed for the task of Visual Question Answering (VQA). The performance of most models is clustered around 60-70%. In this paper we propose systematic methods to analyze the behavior of these models as a first step towards recognizing their strengths and weaknesses, and identifying the most fruitful directions for progress. We analyze two models, one each from two major classes of VQA models -- with-attention and without-attention and show the similarities and differences in the behavior of these models. We also analyze the winning entry of the VQA Challenge 2016. Our behavior analysis reveals that despite recent progress, today's VQA models are "myopic" (tend to fail on sufficiently novel instances), often "jump to conclusions" (converge on a predicted answer after 'listening' to just half the question), and are "stubborn" (do not change their answers across images).Comment: 13 pages, 20 figures; To appear in EMNLP 201

    Don't Just Assume; Look and Answer: Overcoming Priors for Visual Question Answering

    Full text link
    A number of studies have found that today's Visual Question Answering (VQA) models are heavily driven by superficial correlations in the training data and lack sufficient image grounding. To encourage development of models geared towards the latter, we propose a new setting for VQA where for every question type, train and test sets have different prior distributions of answers. Specifically, we present new splits of the VQA v1 and VQA v2 datasets, which we call Visual Question Answering under Changing Priors (VQA-CP v1 and VQA-CP v2 respectively). First, we evaluate several existing VQA models under this new setting and show that their performance degrades significantly compared to the original VQA setting. Second, we propose a novel Grounded Visual Question Answering model (GVQA) that contains inductive biases and restrictions in the architecture specifically designed to prevent the model from 'cheating' by primarily relying on priors in the training data. Specifically, GVQA explicitly disentangles the recognition of visual concepts present in the image from the identification of plausible answer space for a given question, enabling the model to more robustly generalize across different distributions of answers. GVQA is built off an existing VQA model -- Stacked Attention Networks (SAN). Our experiments demonstrate that GVQA significantly outperforms SAN on both VQA-CP v1 and VQA-CP v2 datasets. Interestingly, it also outperforms more powerful VQA models such as Multimodal Compact Bilinear Pooling (MCB) in several cases. GVQA offers strengths complementary to SAN when trained and evaluated on the original VQA v1 and VQA v2 datasets. Finally, GVQA is more transparent and interpretable than existing VQA models.Comment: 15 pages, 10 figures. To appear in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Object-Proposal Evaluation Protocol is 'Gameable'

    Full text link
    Object proposals have quickly become the de-facto pre-processing step in a number of vision pipelines (for object detection, object discovery, and other tasks). Their performance is usually evaluated on partially annotated datasets. In this paper, we argue that the choice of using a partially annotated dataset for evaluation of object proposals is problematic -- as we demonstrate via a thought experiment, the evaluation protocol is 'gameable', in the sense that progress under this protocol does not necessarily correspond to a "better" category independent object proposal algorithm. To alleviate this problem, we: (1) Introduce a nearly-fully annotated version of PASCAL VOC dataset, which serves as a test-bed to check if object proposal techniques are overfitting to a particular list of categories. (2) Perform an exhaustive evaluation of object proposal methods on our introduced nearly-fully annotated PASCAL dataset and perform cross-dataset generalization experiments; and (3) Introduce a diagnostic experiment to detect the bias capacity in an object proposal algorithm. This tool circumvents the need to collect a densely annotated dataset, which can be expensive and cumbersome to collect. Finally, we plan to release an easy-to-use toolbox which combines various publicly available implementations of object proposal algorithms which standardizes the proposal generation and evaluation so that new methods can be added and evaluated on different datasets. We hope that the results presented in the paper will motivate the community to test the category independence of various object proposal methods by carefully choosing the evaluation protocol.Comment: 15 pages, 11 figures, 4 table
    • …
    corecore