12 research outputs found

    Bioelectrochemical transformation of carbon dioxide to target compounds through microbial electrosynthesis

    Get PDF
    In 2015 the average concentration of CO2 in the atmosphere exceeded 400 ppm. Some technologies, including CO2 capture and storage, are palliative. However, the development of alternatives to burning of fossil fuels focuses on the base of the problem and proposes substantial changes in the energy model. This thesis proposes the use of bioelectrochemical systems to transform CO2 into valuable products. This process is known as microbial electrosynthesis, and is based on the use of bacteria able to use the electrode as an electron donor (biocathode) to drive CO2 reduction. The results show that the production of hydrogen as intermediate is key to allow further CO2 reduction. This thesis has proven methane production, and organic liquid compounds of two (acetic acid) and four (butyric acid) carbons. The results invite to continue investigating to exploit all the potential of BES and enable its industrial scalabilityEl 2015 la concentració mitjana de CO2 a l’atmosfera va superar per primera vegada les 400 ppm. Algunes tecnologies, com la captura i emmagatzematge de CO2, són pal·liatives. En canvi, el desenvolupament d’alternatives a la crema de combustibles fòssils van a l’arrel del problema i proposen canvis substancials en el model energètic. Aquesta tesi planteja l’ús dels sistemes bioelectroquímics per transformar el CO2 en productes amb valor afegit. Aquest procés es coneix com electrosíntesi microbiana, i es basa en la utilització de bacteris capaços d’utilitzar l’elèctrode com a donador d’electrons (biocàtode) per portar a terme la reducció de CO2. Els resultats demostren que la producció d’hidrogen com a compost intermedi es la clau per poder portar a terme la reducció de CO2. Aquesta tesi ha demostrat la producció de metà, i compostos líquids orgànics de dos (acid acètic) i quatre (acid butíric) carbonis. Els resultats esperonen a continuar investigant per aprofitar tot el potencial dels BES i fer possible la seva escalabilitat industria

    Tracking bio-hydrogen-mediated production of commodity chemicals from carbon dioxide and renewable electricity

    No full text
    This study reveals that reduction of carbon dioxide (CO2) to commodity chemicals can be functionally compartmentalized in bioelectrochemical systems. In the present example, a syntrophic consortium composed by H2-producers (Rhodobacter sp.) in the biofilm is combined with carboxidotrophic Clostridium species, mainly found in the bulk liquid. The performance of these H2-mediated electricity-driven systems could be tracked by the activity of a biological H2sensory protein identified at cathode potentials between −0.2 V and −0.3 V vs SHE. This seems to point out that such signal is not strain specific, but could be detected in any organism containing hydrogenases. Thus, the findings of this work open the door to the development of a biosensor application or soft sensors for monitoring such systemsThe authors would like to thank the Spanish Ministry (CTQ2014-53718-R and CTM2013-43454-R) and the University of Girona (MPCUdG2016/137) for theirs financial support. LEQUIA and IEA have been recognised as consolidated research groups by the Catalan Government (2014-SGR-1168, and 2014-SGR-484). R. G. gratefully acknowledges support from Ghent University BOF postdoctoral fellowship (BOF15/PDO/068). P.B-V gratefully acknowledges the Catalan Government for the pre-doctoral grant received (2015FI-B2 00076

    On the edge of research and technological application: a critical review of electromethanogenesis

    No full text
    The conversion of electrical current intomethane (electromethanogenesis) bymicrobes represents one of the most promising applications of bioelectrochemical systems (BES). Electromethanogenesis provides a novel approach to waste treatment, carbon dioxide fixation and renewable energy storage into a chemically stable compound, such as methane. This has become an important area of research since it was first described, attracting different research groups worldwide. Basics of the process such as microorganisms involved and main reactions are now much better understood, and recent advances in BES configuration and electrode materials in lab-scale enhance the interest in this technology. However, there are still some gaps that need to be filled to move towards its application. Side reactions or scaling-up issues are clearly among the main challenges that need to be overcome to its further development. This review summarizes the recent advances made in the field of electromethanogenesis to address the main future challenges and opportunities of this novel process. In addition, the present fundamental knowledge is critically reviewed and some insights are provided to identify potential niche applications and help researchers to overcome current technological boundaries. © 2017 by the authors

    Microbial electrosynthesis of isobutyric, butyric, caproic acids, and corresponding alcohols from carbon dioxide

    No full text
    Microbial electrosynthesis is potentially a sustainable biotechnology for the conversion of the greenhouse gas CO into carboxylic acids, thus far mostly limited to acetic acid (C2). Despite the environmental benefits of recycling CO emissions to counter global warming, bioelectrochemical production of acetate is not very attractive from an economic point of view. Conversely, carboxylates and corresponding alcohols with longer C content not only have a higher economical value as compared to acetate, but they are also relevant platform chemicals and fuels used on a diverse array of industrial applications. Here, we report on a specific mixed reactor microbiome capable of producing a mixture of C4 and C6 carboxylic acids (isobutyric, n-butyric, and n-caproic acids) and their corresponding alcohols (isobutanol, n-butanol, and n-hexanol) using CO as the sole carbon source and reducing power provided by an electrode. Metagenomic analysis supports the hypothesis of a sequential carbon chain elongation process comprised of acetogenesis, solventogenesis, and reverse β-oxidation, and that isobutyric acid is derived from the isomerization of n-butyric acid

    Microbial Community Pathways for the Production of Volatile Fatty Acids From CO2 and Electricity

    No full text
    This study aims at elucidating the metabolic pathways involved in the production of volatile fatty acids from CO2 and electricity. Two bioelectrochemical systems (BES) were fed with pure CO2 (cells A and B). The cathode potential was first poised at −574 mV vs. standard hydrogen electrode (SHE) and then at −756 mV vs. SHE in order to ensure the required reducing power. Despite applying similar operation conditions to both BES, they responded differently. A mixture of organic compounds (1.87 mM acetic acid, 2.30 mM formic acid, 0.43 mM propionic acid, 0.15 mM butyric acid, 0.55 mM valeric acid, and 0.62 mM ethanol) was produced in cell A while mainly 1.82 mM acetic acid and 0.23 mM propionic acid were produced in cell B. The microbial community analysis performed by 16S rRNA gene pyrosequencing showed a predominance of Clostridium sp. and Serratia sp. in cell A whereas Burkholderia sp. and Xanthobacter sp. predominated in cell B. The coexistence of three metabolic pathways involved in carbon fixation was predicted. Calvin cycle was predicted in both cells during the whole experiment while Wood-Ljungdahl and Arnon-Buchanan pathways predominated in the period with higher coulombic efficiency. Metabolic pathways which transform organic acids into anabolic intermediaries were also predicted, indicating the occurrence of complex trophic interactions. These results further complicate the understanding of these mixed culture microbial processes but also expand the expectation of compounds that could potentially be produced with this technology

    On the Edge of Research and Technological Application: A Critical Review of Electromethanogenesis

    No full text
    The conversion of electrical current into methane (electromethanogenesis) by microbes represents one of the most promising applications of bioelectrochemical systems (BES). Electromethanogenesis provides a novel approach to waste treatment, carbon dioxide fixation and renewable energy storage into a chemically stable compound, such as methane. This has become an important area of research since it was first described, attracting different research groups worldwide. Basics of the process such as microorganisms involved and main reactions are now much better understood, and recent advances in BES configuration and electrode materials in lab-scale enhance the interest in this technology. However, there are still some gaps that need to be filled to move towards its application. Side reactions or scaling-up issues are clearly among the main challenges that need to be overcome to its further development. This review summarizes the recent advances made in the field of electromethanogenesis to address the main future challenges and opportunities of this novel process. In addition, the present fundamental knowledge is critically reviewed and some insights are provided to identify potential niche applications and help researchers to overcome current technological boundarie

    Deciphering the electron transfer mechanisms for biogas upgrading to biomethane within a mixed culture biocathode

    No full text
    Biogas upgrading is an expanding field dealing with the increase in methane content of the biogas to produce biomethane. Biomethane has a high calorific content and can be used as a vehicle fuel or directly injected into the gas grid. Bioelectrochemical systems (BES) could become an alternative for biogas upgrading, by which the yield of the process in terms of carbon utilisation could be increased. The simulated effluent from a water scrubbing-like unit was used to feed a BES. The BES was operated with the biocathode poised at −800 mV vs. SHE to drive the reduction of the CO2 fraction of the biogas into methane. The BES was operated in batch mode to characterise methane production and under continuous flow to demonstrate its long-term viability. The maximum methane production rate obtained during batch tests was 5.12 ± 0.16 mmol m−2 per day with a coulombic efficiency (CE) of 75.3 ± 5.2%. The production rate increased to 15.35 mmol m−2 per day (CE of 68.9 ± 0.8%) during the continuous operation. Microbial community analyses and cyclic voltammograms showed that the main mechanism for methane production in the biocathode was hydrogenotrophic methanogenesis by Methanobacterium sp., and that electromethanogenesis occurred to a minor extent. The presence of other microorganisms in the biocathode, such as Methylocystis sp. revealed the presence of side reactions, such as oxygen diffusion from the anode compartment, which decreased the efficiency of the BES. The results of the present work offer the first experimental report on the application of BES in the field of biogas upgrading processesThis research was nancially supported by the Spanish Government (CTQ 2014-53718-R). P. B-V. and A. V-P. were supported by a project grant from the Catalan Government (2014 FIB1 00119 and 2014 FI-B 00093). LEQUIA has been recognised as consolidated research group by the Catalan Government with code 2014-SGR-1168. Authors acknowledge the collaboration of Lluis Baneras from the Group of Molecular Microbial Ecology (University of Girona), who helped with the microbial analyse

    Data_Sheet_1.DOCX

    No full text
    <p>This study aims at elucidating the metabolic pathways involved in the production of volatile fatty acids from CO<sub>2</sub> and electricity. Two bioelectrochemical systems (BES) were fed with pure CO<sub>2</sub> (cells A and B). The cathode potential was first poised at −574 mV vs. standard hydrogen electrode (SHE) and then at −756 mV vs. SHE in order to ensure the required reducing power. Despite applying similar operation conditions to both BES, they responded differently. A mixture of organic compounds (1.87 mM acetic acid, 2.30 mM formic acid, 0.43 mM propionic acid, 0.15 mM butyric acid, 0.55 mM valeric acid, and 0.62 mM ethanol) was produced in cell A while mainly 1.82 mM acetic acid and 0.23 mM propionic acid were produced in cell B. The microbial community analysis performed by 16S rRNA gene pyrosequencing showed a predominance of Clostridium sp. and Serratia sp. in cell A whereas Burkholderia sp. and Xanthobacter sp. predominated in cell B. The coexistence of three metabolic pathways involved in carbon fixation was predicted. Calvin cycle was predicted in both cells during the whole experiment while Wood-Ljungdahl and Arnon-Buchanan pathways predominated in the period with higher coulombic efficiency. Metabolic pathways which transform organic acids into anabolic intermediaries were also predicted, indicating the occurrence of complex trophic interactions. These results further complicate the understanding of these mixed culture microbial processes but also expand the expectation of compounds that could potentially be produced with this technology.</p

    Data_Sheet_2.XLSX

    No full text
    <p>This study aims at elucidating the metabolic pathways involved in the production of volatile fatty acids from CO<sub>2</sub> and electricity. Two bioelectrochemical systems (BES) were fed with pure CO<sub>2</sub> (cells A and B). The cathode potential was first poised at −574 mV vs. standard hydrogen electrode (SHE) and then at −756 mV vs. SHE in order to ensure the required reducing power. Despite applying similar operation conditions to both BES, they responded differently. A mixture of organic compounds (1.87 mM acetic acid, 2.30 mM formic acid, 0.43 mM propionic acid, 0.15 mM butyric acid, 0.55 mM valeric acid, and 0.62 mM ethanol) was produced in cell A while mainly 1.82 mM acetic acid and 0.23 mM propionic acid were produced in cell B. The microbial community analysis performed by 16S rRNA gene pyrosequencing showed a predominance of Clostridium sp. and Serratia sp. in cell A whereas Burkholderia sp. and Xanthobacter sp. predominated in cell B. The coexistence of three metabolic pathways involved in carbon fixation was predicted. Calvin cycle was predicted in both cells during the whole experiment while Wood-Ljungdahl and Arnon-Buchanan pathways predominated in the period with higher coulombic efficiency. Metabolic pathways which transform organic acids into anabolic intermediaries were also predicted, indicating the occurrence of complex trophic interactions. These results further complicate the understanding of these mixed culture microbial processes but also expand the expectation of compounds that could potentially be produced with this technology.</p
    corecore