8,757 research outputs found

    Searching for solar siblings among the HARPS data

    Full text link
    The search for the solar siblings has been particularly fruitful in the last few years. Until now, there are four plausible candidates pointed out in the literature: HIP21158, HIP87382, HIP47399, and HIP92831. In this study we conduct a search for solar siblings among the HARPS high-resolution FGK dwarfs sample, which includes precise chemical abundances and kinematics for 1111 stars. Using a new approach based on chemical abundance trends with the condensation temperature, kinematics, and ages we found one (additional) potential solar sibling candidate: HIP97507.Comment: 4 pages, 2 figures, 1 table. Accepted in A&

    Electron Spin Resonance of defects in the Haldane System Y(2)BaNiO(5)

    Full text link
    We calculate the electron paramagnetic resonance (EPR) spectra of the antiferromagnetic spin-1 chain compound Y(2)BaNi(1-x)Mg(x)O(5) for different values of x and temperature T much lower than the Haldane gap (~100K). The low-energy spectrum of an anisotropic Heisenberg Hamiltonian, with all parameters determined from experiment, has been solved using DMRG. The observed EPR spectra are quantitatively reproduced by this model. The presence of end-chain S=1/2 states is clearly observed as the main peak in the spectrum and the remaining structure is completely understood.Comment: 5 pages, 4 figures include

    Magnetoelectric effects in an organo-metallic quantum magnet

    Full text link
    We observe a bilinear magnetic field-induced electric polarization of 50 μC/m2\mu C/m^2 in single crystals of NiCl2_2-4SC(NH2_2)2_2 (DTN). DTN forms a tetragonal structure that breaks inversion symmetry, with the highly polar thiourea molecules all tilted in the same direction along the c-axis. Application of a magnetic field between 2 and 12 T induces canted antiferromagnetism of the Ni spins and the resulting magnetization closely tracks the electric polarization. We speculate that the Ni magnetic forces acting on the soft organic lattice can create significant distortions and modify the angles of the thiourea molecules, thereby creating a magnetoelectric effect. This is an example of how magnetoelectric effects can be constructed in organo-metallic single crystals by combining magnetic ions with electrically polar organic elements.Comment: 3 pages, 3 figure

    Complementary action of chemical and electrical synapses to perception

    Get PDF
    Acknowledgements This study was possible by partial financial support from the following agencies: Fundação Araucária, EPSRC-EP/I032606/1, CNPq No. 441553/2014-1, CAPES No. 17656-12-5 and Science Without Borders Program— Process Nos. 17656125, 99999.010583/2013-00 and 245377/2012-3.Peer reviewedPostprin
    corecore