11,198 research outputs found

    Superconductivity and incommensurate spin fluctuations in a generalized t-J model for the cuprates

    Full text link
    We consider the slave-fermion Schwinger-boson decomposition of an effective model obtained through a systematic low-energy reduction of the three-band Hubbard Hamiltonian. The model includes a three-site term t'' similar to that obtained in the large-U limit of the Hubbard model but of opposite sign for realistic or large O-O hopping. For parameters close to the most realistic ones for the cuprates, the mean-field solution exhibits d+s superconductivity (predominantly d_{x^2-y^2}) with a dependence on doping x very similar to the experimentally observed. We also obtained incommensurate peaks at wave vectors near π(1,1+(−)2x)\pi (1,1 +(-) 2x) in the spin structure factor, which also agree with experiment.Comment: 9 pages, latex, 2 figures, to appear in Europhys. Let

    Parallel structurally-symmetric sparse matrix-vector products on multi-core processors

    Full text link
    We consider the problem of developing an efficient multi-threaded implementation of the matrix-vector multiplication algorithm for sparse matrices with structural symmetry. Matrices are stored using the compressed sparse row-column format (CSRC), designed for profiting from the symmetric non-zero pattern observed in global finite element matrices. Unlike classical compressed storage formats, performing the sparse matrix-vector product using the CSRC requires thread-safe access to the destination vector. To avoid race conditions, we have implemented two partitioning strategies. In the first one, each thread allocates an array for storing its contributions, which are later combined in an accumulation step. We analyze how to perform this accumulation in four different ways. The second strategy employs a coloring algorithm for grouping rows that can be concurrently processed by threads. Our results indicate that, although incurring an increase in the working set size, the former approach leads to the best performance improvements for most matrices.Comment: 17 pages, 17 figures, reviewed related work section, fixed typo

    Tipping time of a quantum rod

    Full text link
    The behaviour of a quantum rod, pivoted at its lower end on an impenetrable floor and restricted to moving in the vertical plane under the gravitational potential is studied analytically under the approximation that the rod is initially localised to a small-enough neighbourhood around the point of classical unstable equilibrium. It is shown that the rod evolves out of this neighbourhood. The time required for this to happen, i.e., the tipping time is calculated using the semi-classical path integral. It is shown that equilibrium is recovered in the classical limit, and that our calculations are consistent with the uncertainty principle.Comment: 10 pages, 1 figure, To appear in Euro. J. Phy

    Hamiltonian Reduction and the Construction of q-Deformed Extensions of the Virasoro Algebra

    Full text link
    In this paper we employ the construction of Dirac bracket for the remaining current of sl(2)qsl(2)_q deformed Kac-Moody algebra when constraints similar to those connecting the sl(2)sl(2)-WZW model and the Liouville theory are imposed and show that it satisfy the q-Virasoro algebra proposed by Frenkel and Reshetikhin. The crucial assumption considered in our calculation is the existence of a classical Poisson bracket algebra induced, in a consistent manner by the correspondence principle, mapping the quantum generators into commuting objects of classical nature preserving their algebra.Comment: 6 pages, late

    Statistics of finite-time Lyapunov exponents in the Ulam map

    Full text link
    The statistical properties of finite-time Lyapunov exponents at the Ulam point of the logistic map are investigated. The exact analytical expression for the autocorrelation function of one-step Lyapunov exponents is obtained, allowing the calculation of the variance of exponents computed over time intervals of length nn. The variance anomalously decays as 1/n21/n^2. The probability density of finite-time exponents noticeably deviates from the Gaussian shape, decaying with exponential tails and presenting 2n−12^{n-1} spikes that narrow and accumulate close to the mean value with increasing nn. The asymptotic expression for this probability distribution function is derived. It provides an adequate smooth approximation to describe numerical histograms built for not too small nn, where the finiteness of bin size trimmes the sharp peaks.Comment: 6 pages, 4 figures, to appear in Phys. Rev.
    • …
    corecore