262 research outputs found
Stress and Strain in Flat Piling of Disks
We have created a flat piling of disks in a numerical experiment using the
Distinct Element Method (DEM) by depositing them under gravity. In the
resulting pile, we then measured increments in stress and strain that were
associated with a small decrease in gravity. We first describe the stress in
terms of the strain using isotropic elasticity theory. Then, from a
micro-mechanical view point, we calculate the relation between the stress and
strain using the mean strain assumption. We compare the predicted values of
Young's modulus and Poisson's ratio with those that were measured in the
numerical experiment.Comment: 9 pages, 1 table, 8 figures, and 2 pages for captions of figure
The anisotropy of granular materials
The effect of the anisotropy on the elastoplastic response of two dimensional
packed samples of polygons is investigated here, using molecular dynamics
simulation. We show a correlation between fabric coefficients, characterizing
the anisotropy of the granular skeleton, and the anisotropy of the elastic
response. We also study the anisotropy induced by shearing on the subnetwork of
the sliding contacts. This anisotropy provides an explanation to some features
of the plastic deformation of granular media.Comment: Submitted to PR
Search for low-mass dark matter via bremsstrahlung radiation and the Migdal effect in SuperCDMS
We present a new analysis of previously published SuperCDMS data using a profile likelihood framework to search for sub-GeV dark matter (DM) particles through two inelastic scattering channels: bremsstrahlung radiation and the Migdal effect. By considering these possible inelastic scattering channels, experimental sensitivity can be extended to DM masses that are undetectable through the DM-nucleon elastic scattering channel, given the energy threshold of current experiments. We exclude DM masses down to 220 MeV/c2 at 2.7×10-30 cm2 via the bremsstrahlung channel. The Migdal channel search provides overall considerably more stringent limits and excludes DM masses down to 30 MeV/c2 at 5.0×10-30 cm2
Effects of Friction and Disorder on the Quasi-Static Response of Granular Solids to a Localized Force
The response to a localized force provides a sensitive test for different
models of stress transmission in granular solids. The elasto-plastic models
traditionally used by engineers have been challenged by theoretical and
experimental results which suggest a wave-like (hyperbolic) propagation of the
stress, as opposed to the elliptic equations of static elasticity. Numerical
simulations of two-dimensional granular systems subject to a localized external
force are employed to examine the nature of stress transmission in these
systems as a function of the magnitude of the applied force, the frictional
parameters and the disorder (polydispersity). The results indicate that in
large systems (typically considered by engineers), the response is close to
that predicted by isotropic elasticity whereas the response of small systems
(or when sufficiently large forces are applied) is strongly anisotropic. In the
latter case the applied force induces changes in the contact network
accompanied by frictional sliding. The larger the coefficient of static
friction, the more extended is the range of forces for which the response is
elastic and the smaller the anisotropy. Increasing the degree of polydispersity
(for the range studied, up to 25%) decreases the range of elastic response.
This article is an extension of a previously published letter [1].Comment: 21 pages (PDFLaTeX), 24 figures (some of them bitmapped to save
space); submitted to Phys. Rev.
- …