10 research outputs found
Numerical simulations of compressible Rayleigh-Taylor turbulence in stratified fluids
We present results from numerical simulations of Rayleigh-Taylor turbulence,
performed using a recently proposed lattice Boltzmann method able to describe
consistently a thermal compressible flow subject to an external forcing. The
method allowed us to study the system both in the nearly-Boussinesq and
strongly compressible regimes. Moreover, we show that when the stratification
is important, the presence of the adiabatic gradient causes the arrest of the
mixing process.Comment: 15 pages, 11 figures. Proceedings of II Conference on Turbulent
Mixing and Beyond (TMB-2009
Permeability of self-affine rough fractures
The permeability of two-dimensional fractures with self-affine fractal
roughness is studied via analytic arguments and numerical simulations. The
limit where the roughness amplitude is small compared with average fracture
aperture is analyzed by a perturbation method, while in the opposite case of
narrow aperture, we use heuristic arguments based on lubrication theory.
Numerical simulations, using the lattice Boltzmann method, are used to examine
the complete range of aperture sizes, and confirm the analytic arguments.Comment: 11 pages, 9 figure