948 research outputs found

    The intermittent behavior and hierarchical clustering of the cosmic mass field

    Get PDF
    The hierarchical clustering model of the cosmic mass field is examined in the context of intermittency. We show that the mass field satisfying the correlation hierarchy Οn≃Qn(Ο2)n−1\xi_n\simeq Q_n(\xi_2)^{n-1} is intermittent if Îș<d\kappa < d, where dd is the dimension of the field, and Îș\kappa is the power-law index of the non-linear power spectrum in the discrete wavelet transform (DWT) representation. We also find that a field with singular clustering can be described by hierarchical clustering models with scale-dependent coefficients QnQ_n and that this scale-dependence is completely determined by the intermittent exponent and Îș\kappa. Moreover, the singular exponents of a field can be calculated by the asymptotic behavior of QnQ_n when nn is large. Applying this result to the transmitted flux of HS1700 Lyα\alpha forests, we find that the underlying mass field of the Lyα\alpha forests is significantly intermittent. On physical scales less than about 2.0 h−1^{-1} Mpc, the observed intermittent behavior is qualitatively different from the prediction of the hierarchical clustering with constant QnQ_n. The observations, however, do show the existence of an asymptotic value for the singular exponents. Therefore, the mass field can be described by the hierarchical clustering model with scale-dependent QnQ_n. The singular exponent indicates that the cosmic mass field at redshift ∌2\sim 2 is weakly singular at least on physical scales as small as 10 h−1^{-1} kpc.Comment: AAS Latex file, 33 pages,5 figures included, accepted for publication in Ap

    Exact Results for Hamiltonian Walks from the Solution of the Fully Packed Loop Model on the Honeycomb Lattice

    Full text link
    We derive the nested Bethe Ansatz solution of the fully packed O(nn) loop model on the honeycomb lattice. From this solution we derive the bulk free energy per site along with the central charge and geometric scaling dimensions describing the critical behaviour. In the n=0n=0 limit we obtain the exact compact exponents Îł=1\gamma=1 and Îœ=1/2\nu=1/2 for Hamiltonian walks, along with the exact value Îș2=33/4\kappa^2 = 3 \sqrt 3 /4 for the connective constant (entropy). Although having sets of scaling dimensions in common, our results indicate that Hamiltonian walks on the honeycomb and Manhattan lattices lie in different universality classes.Comment: 12 pages, RevTeX, 3 figures supplied on request, ANU preprint MRR-050-9

    A note on graded Yang-Baxter solutions as braid-monoid invariants

    Full text link
    We construct two Osp(n∣2m)Osp(n|2m) solutions of the graded Yang-Baxter equation by using the algebraic braid-monoid approach. The factorizable S-matrix interpretation of these solutions is also discussed.Comment: 7 pages, UFSCARF-TH-94-1

    Thermal and magnetic properties of integrable spin-1 and spin-3/2 chains with applications to real compounds

    Full text link
    The ground state and thermodynamic properties of spin-1 and spin-3/2 chains are investigated via exactly solved su(3) and su(4) models with physically motivated chemical potential terms. The analysis involves the Thermodynamic Bethe Ansatz and the High Temperature Expansion (HTE) methods. For the spin-1 chain with large single-ion anisotropy, a gapped phase occurs which is significantly different from the valence-bond-solid Haldane phase. The theoretical curves for the magnetization, susceptibility and specific heat are favourably compared with experimental data for a number of spin-1 chain compounds. For the spin-3/2 chain a degenerate gapped phase exists starting at zero external magnetic field. A middle magnetization plateau can be triggered by the single-ion anisotropy term. Overall, our results lend further weight to the applicability of integrable models to the physics of low-dimensional quantum spin systems. They also highlight the utility of the exact HTE method.Comment: 38 pages, 15 figure

    Magnus and Iordanskii Forces in Superfluids

    Full text link
    The total transverse force acting on a quantized vortex in a superfluid is a problem that has eluded a complete understanding for more than three decades. In this letter I propose a remarkably simple argument, somewhat reminiscent of Laughlin's beautiful argument for the quantization of conductance in the quantum Hall effect, to define the superfluid velocity part of the transverse force. This term is found to be −ρsÎșs×vs- \rho_s {\kappa}_s \times {v}_s. Although this result does not seem to be overly controversial, this thermodynamic argument based only on macroscopic properties of the superfluid does offer a robust derivation. A recent publication by Thouless, Ao and Niu has demonstrated that the vortex velocity part of the transverse force in a homogeneous neutral superfluid is given by the usual form ρsÎșs×vV\rho_s {\kappa}_s \times {v}_V. A combination of these two independent results and the required Galilean invariance yields that there cannot be any transverse force proportional to the normal fluid velocity, in apparent conflict with Iordanskii's theory of the transverse force due to phonon scattering by the vortex.Comment: RevTex, 1 Encapsulated Postscript figur

    The Distribution of H2O Maser Emission in the Nucleus of NGC 4945

    Get PDF
    We present the first interferometer map of the water maser emission in the active nucleus of NGC 4945. Although the declination of the galaxy is about -49 degrees, we were able to make the observations with the southernmost antennas of the Very Long Baseline Array. Strong maser emission is present in three velocity ranges, one near the systemic velocity and two shifted roughly symmetrically by +/-(100-150) km/s. This is the first detection of highly blue-shifted water emission in NGC 4945. We determined the position of the maser to be RA(B1950)= 13 02 32.28 +/- 0.02 ; Dec(B1950)= -49 12 01.9 +/- 0.1. The uncertainties in earlier estimates are at least several arcseconds. The maser lies within 2'' (36 pc at a distance of 3.7 Mpc) of the peaks in 1.4 GHz continuum and 1.6 micron emission from the nucleus. The mappable maser emission is distributed roughly linearly over about 40 milliarcseconds (0.7 pc) at a position angle of about 45 degrees, which is close to the 43 +/- 2 degree position angle of the galactic disk. The red and blue-shifted emission symmetrically stradle the systemic emission on the sky, which suggests material in edge-on circular motion around a central object. The position-velocity structure indicates a binding mass of about one million Suns, within a volume of radius about 0.3 pc. This implies that the central engine radiates on the order of 10% of its Eddington luminosity.Comment: 18 pages, including 5 Postscript figures. Accepted for publication in ApJ Letter

    One-Dimensional Impenetrable Anyons in Thermal Equilibrium. II. Determinant Representation for the Dynamic Correlation Functions

    Full text link
    We have obtained a determinant representation for the time- and temperature-dependent field-field correlation function of the impenetrable Lieb-Liniger gas of anyons through direct summation of the form factors. In the static case, the obtained results are shown to be equivalent to those that follow from the anyonic generalization of Lenard's formula.Comment: 16 pages, RevTeX

    Thermodynamics, spin-charge separation and correlation functions of spin-1/2 fermions with repulsive interaction

    Get PDF
    We investigate the low temperature thermodynamics and correlation functions of one-dimensional spin-1/2 fermions with strong repulsion in an external magnetic field via the thermodynamic Bethe ansatz method. The exact thermodynamics of the model in a weak magnetic field is derived with the help of Wiener-Hopf techniques. It turns out that the low energy physics can be described by spin-charge separated conformal field theories of an effective Tomonaga-Luttinger liquid and an antiferromagnetic SU(2) Heisenberg spin chain. However, these two types of conformally invariant low-lying excitations may break down as excitations take place far away from the Fermi points. The long distance asymptotics of the correlation functions and the critical exponents for the model in the presence of a magnetic field at zero temperature are derived in detail by solving dressed charge equations and by conformal mapping. Furthermore, we calculate the conformal dimensions for particular cases of correlation functions. The leading terms of these correlation functions are given explicitly for a weak magnetic field Hâ‰Ș1H\ll 1 and for a magnetic field close to the critical field H→HcH\rightarrow H_{c}. Our analytical results provide insights into universal thermodynamics and criticality in one-dimensional many-body physics.Comment: revised version, 47 pages, 4 figures, additional tex

    Magnetic Field Amplification by Small-Scale Dynamo Action: Dependence on Turbulence Models and Reynolds and Prandtl Numbers

    Get PDF
    The small-scale dynamo is a process by which turbulent kinetic energy is converted into magnetic energy, and thus is expected to depend crucially on the nature of turbulence. In this work, we present a model for the small-scale dynamo that takes into account the slope of the turbulent velocity spectrum v(l) ~ l^theta, where l and v(l) are the size of a turbulent fluctuation and the typical velocity on that scale. The time evolution of the fluctuation component of the magnetic field, i.e., the small-scale field, is described by the Kazantsev equation. We solve this linear differential equation for its eigenvalues with the quantum-mechanical WKB-approximation. The validity of this method is estimated as a function of the magnetic Prandtl number Pm. We calculate the minimal magnetic Reynolds number for dynamo action, Rm_crit, using our model of the turbulent velocity correlation function. For Kolmogorov turbulence (theta=1/3), we find that the critical magnetic Reynolds number is approximately 110 and for Burgers turbulence (theta=1/2) approximately 2700. Furthermore, we derive that the growth rate of the small-scale magnetic field for a general type of turbulence is Gamma ~ Re^((1-theta)/(1+theta)) in the limit of infinite magnetic Prandtl numbers. For decreasing magnetic Prandtl number (down to Pm approximately larger than 10), the growth rate of the small-scale dynamo decreases. The details of this drop depend on the WKB-approximation, which becomes invalid for a magnetic Prandtl number of about unity.Comment: 13 pages, 8 figures; published in Phys. Rev. E 201

    Tangling clustering of inertial particles in stably stratified turbulence

    Full text link
    We have predicted theoretically and detected in laboratory experiments a new type of particle clustering (tangling clustering of inertial particles) in a stably stratified turbulence with imposed mean vertical temperature gradient. In this stratified turbulence a spatial distribution of the mean particle number density is nonuniform due to the phenomenon of turbulent thermal diffusion, that results in formation of a gradient of the mean particle number density, \nabla N, and generation of fluctuations of the particle number density by tangling of the gradient, \nabla N, by velocity fluctuations. The mean temperature gradient, \nabla T, produces the temperature fluctuations by tangling of the gradient, \nabla T, by velocity fluctuations. These fluctuations increase the rate of formation of the particle clusters in small scales. In the laboratory stratified turbulence this tangling clustering is much more effective than a pure inertial clustering that has been observed in isothermal turbulence. In particular, in our experiments in oscillating grid isothermal turbulence in air without imposed mean temperature gradient, the inertial clustering is very weak for solid particles with the diameter 10 microns and Reynolds numbers Re =250. Our theoretical predictions are in a good agreement with the obtained experimental results.Comment: 16 pages, 4 figures, REVTEX4, revised versio
    • 

    corecore