5 research outputs found

    Cuidado de las lesiones posparto en la consulta perineal

    Get PDF
    El objetivo de este artículo fue revisar bibliográficamente los principales problemas que se derivan de las lesiones perineales, así como dar a conocer el trabajo de la matrona en una consulta perineal y el modo en que se está implementando esta consulta en el Hospital General de Granollers. Para cumplir con la primera parte del objetivo, se realizó una revisión bibliográfica sobre las complicaciones derivadas de las lesiones perineales que ocurren durante el parto. Los resultados obtenidos se han estructurado en los siguientes apartados: dolor perineal y dispareunia, infección y dehiscencia, incontinencia urinaria y prolapso genital (lesión del músculo elevador del ano) e incontinencia fecal y de gases (lesión del esfínter anal). En la segunda parte del artículo se explica la experiencia que se realizó en el Servicio de Obstetricia del Hospital de Granollers para disminuir la morbilidad posparto derivada de las lesiones perineales. Se implementaron diversas medidas de prevención, y se creó una consulta perineal para dar continuidad a los cuidados especializados para las mujeres que han sufrido alguna complicación perineal tras el parto vaginal. La matrona, integrada en el equipo multidisciplinario especialista en suelo pélvico, es la profesional que realiza este seguimiento y proporciona apoyo a la mujer

    A humid electronic nose based on pulse voltammetry: A proof-of-concept design

    Full text link
    [EN] We report herein the design, manufacture and use of a "humid electronic nose" prototype based on voltammetric techniques. It consists of an array of four working electrodes (i.e., Au, Pt, Ir and Rh) housed inside a homemade stainless steel cylinder, in contact with a fabric mesh made of nylon damped with a NaCl aqueous solution, used as the supporting humid membrane. The "humid electronic nose" was tested for the discrimination of different samples displaying different volatile compounds. The samples chosen involve aqueous solutions of different simple volatile products (i.e., ammonia, acetone, acetic acid and 6-amino-1-hexanol) and different food samples (i.e., onion, coffee and Roquefort cheese). Under working conditions, the volatile compounds from the corresponding sample were generated in the measurement chamber and were partially dissolved in the damped nylon fabric, which was in contact with the set of electrodes. It was envisioned that provided different samples offer different vapours, the application of a suitable set of pulses to the electrodes will differentiate the samples. This proof-of-concept study employed a Large Amplitude Pulse Voltammetry (LAPV) waveform. The increment for the potential steps was of 200 mV and potentials ranged from +1 to -1 V with each pulse applied for 50 ms. PCA studies from the response obtained by the "humid electronic nose" discriminated the different samples studied. The neural network Self Organized Map (SOM) was also used to analyze the electrochemical data obtained from the "humid electronic nose". © 2013 Elsevier B.VThe financial support from the Spanish Government (project MAT2012-38429-C04) and the Generalitat Valenciana (Valencian Regional Government; projects PROMETEO/2009/016 and GV/2012/094); is gratefully acknowledged.Bataller Prats, R.; Campos Sánchez, I.; Alcañiz Fillol, M.; Gil Sánchez, L.; García Breijo, E.; Martínez Mañez, R.; Pascual Vidal, L.... (2013). A humid electronic nose based on pulse voltammetry: A proof-of-concept design. Sensors and Actuators B: Chemical. 186:666-673. https://doi.org/10.1016/j.snb.2013.06.033S66667318

    Glyphosate Detection by Means of a Voltammetric Electronic Tongue and Discrimination of Potential Interferents

    Get PDF
    A new electronic tongue to monitor the presence of glyphosate (a non-selective systemic herbicide) has been developed. It is based on pulse voltammetry and consists in an array of three working electrodes (Pt, Co and Cu) encapsulated on a methacrylate cylinder. The electrochemical response of the sensing array was characteristic of the presence of glyphosate in buffered water (phosphate buffer 0.1 mol·dm-3, pH 6.7). Rotating disc electrode (RDE) studies were carried out with Pt, Co and Cu electrodes in water at room temperature and at pH 6.7 using 0.1 mol·dm-3 of phosphate as a buffer. In the presence of glyphosate, the corrosion current of the Cu and Co electrodes increased significantly, probably due to the formation of Cu2+ or Co2+ complexes. The pulse array waveform for the voltammetric tongue was designed by taking into account some of the redox processes observed in the electrochemical studies. The PCA statistical analysis required four dimensions to explain 95% of variance. Moreover, a two-dimensional representation of the two principal components differentiated the water mixtures containing glyphosate. Furthermore, the PLS statistical analyses allowed the creation of a model to correlate the electrochemical response of the electrodes with glyphosate concentrations, even in the presence of potential interferents such as humic acids and Ca2+. The system offers a PLS prediction model for glyphosate detection with values of 098, -2.3 ¿ 10-5 and 0.94 for the slope, the intercept and the regression coefficient, respectively, which is in agreement with the good fit between the predicted and measured concentrations. The results suggest the feasibility of this system to help develop electronic tongues for glyphosate detection. © 2012 by the authors; licensee MDPI, Basel, Switzerland.Financial support from the Spanish Government (Project MAT2009-14564-C04-01 and PCI-Mediterraneo A/024590/09/A/ 03044/10), the Generalitat Valenciana (Project PROMETEO/2009/016), the UPV (project PAID-05-10) and its Centre de Cooperacio al Desenvolupament (Programa ADSIDEO-COOPERACIO 2010) is gratefully acknowledged.Bataller Prats, R.; Campos Sánchez, I.; Laguarda Miró, N.; Alcañiz Fillol, M.; Soto Camino, J.; Martínez Mañez, R.; Gil Sánchez, L.... (2012). Glyphosate Detection by Means of a Voltammetric Electronic Tongue and Discrimination of Potential Interferents. Sensors. 12:17553-17568. https://doi.org/10.3390/s121217553S175531756812Sierra, E. V., Méndez, M. A., Sarria, V. M., & Cortés, M. T. (2008). Electrooxidación de glifosato sobre electrodos de níquel y cobre. Química Nova, 31(2), 220-226. doi:10.1590/s0100-40422008000200006Sawchuk, J. W., Van Acker, R. C., & Friesen, L. F. (2006). Influence of a Range of Dosages of MCPA, Glyphosate, and Thifensulfuron: Tribenuron (2:1) on Conventional Canola (Brassica napus) and White Bean (Phaseolus vulgaris) Growth and Yield. Weed Technology, 20(1), 184-197. doi:10.1614/wt-05-064r1.1Gasnier, C., Dumont, C., Benachour, N., Clair, E., Chagnon, M.-C., & Séralini, G.-E. (2009). Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology, 262(3), 184-191. doi:10.1016/j.tox.2009.06.006Kataoka, H., Ryu, S., Sakiyama, N., & Makita, M. (1996). Simple and rapid determination of the herbicides glyphosate and glufosinate in river water, soil and carrot samples by gas chromatography with flame photometric detection. Journal of Chromatography A, 726(1-2), 253-258. doi:10.1016/0021-9673(95)01071-8MOTOJYUKU, M., SAITO, T., AKIEDA, K., OTSUKA, H., YAMAMOTO, I., & INOKUCHI, S. (2008). Determination of glyphosate, glyphosate metabolites, and glufosinate in human serum by gas chromatography–mass spectrometry. Journal of Chromatography B, 875(2), 509-514. doi:10.1016/j.jchromb.2008.10.003De Llasera, M. P. G., Gómez-Almaraz, L., Vera-Avila, L. E., & Peña-Alvarez, A. (2005). Matrix solid-phase dispersion extraction and determination by high-performance liquid chromatography with fluorescence detection of residues of glyphosate and aminomethylphosphonic acid in tomato fruit. Journal of Chromatography A, 1093(1-2), 139-146. doi:10.1016/j.chroma.2005.07.063Coutinho, C. F. B., Coutinho, L. F. M., Mazo, L. H., Nixdorf, S. L., & Camara, C. A. P. (2008). Rapid and direct determination of glyphosate and aminomethylphosphonic acid in water using anion-exchange chromatography with coulometric detection. Journal of Chromatography A, 1208(1-2), 246-249. doi:10.1016/j.chroma.2008.09.009Yoshioka, N., Asano, M., Kuse, A., Mitsuhashi, T., Nagasaki, Y., & Ueno, Y. (2011). Rapid determination of glyphosate, glufosinate, bialaphos, and their major metabolites in serum by liquid chromatography–tandem mass spectrometry using hydrophilic interaction chromatography. Journal of Chromatography A, 1218(23), 3675-3680. doi:10.1016/j.chroma.2011.04.021SILVA, A. S., TÓTH, I. V., PEZZA, L., PEZZA, H. R., & LIMA, J. L. F. C. (2011). Determination of Glyphosate in Water Samples by Multi-pumping Flow System Coupled to a Liquid Waveguide Capillary Cell. Analytical Sciences, 27(10), 1031. doi:10.2116/analsci.27.1031Amelin, V. G., Bol’shakov, D. S., & Tretiakov, A. V. (2012). Determination of glyphosate and aminomethylphosphonic acid in surface water and vegetable oil by capillary zone electrophoresis. Journal of Analytical Chemistry, 67(4), 386-391. doi:10.1134/s1061934812020037Da Silva, A. S., Fernandes, F. C. B., Tognolli, J. O., Pezza, L., & Pezza, H. R. (2011). A simple and green analytical method for determination of glyphosate in commercial formulations and water by diffuse reflectance spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(5), 1881-1885. doi:10.1016/j.saa.2011.05.081Chiu, H.-Y., Lin, Z.-Y., Tu, H.-L., & Whang, C.-W. (2008). Analysis of glyphosate and aminomethylphosphonic acid by capillary electrophoresis with electrochemiluminescence detection. Journal of Chromatography A, 1177(1), 195-198. doi:10.1016/j.chroma.2007.11.042Jin, J., Takahashi, F., Kaneko, T., & Nakamura, T. (2010). Characterization of electrochemiluminescence of tris(2,2′-bipyridine)ruthenium(II) with glyphosate as coreactant in aqueous solution. Electrochimica Acta, 55(20), 5532-5537. doi:10.1016/j.electacta.2010.04.031Yang, G., Xu, X., Shen, M., Wang, W., Xu, L., Chen, G., & Fu, F. (2009). Determination of organophosphorus pesticides by capillary electrophoresis-inductively coupled plasma mass spectrometry with collective sample-introduction technique. ELECTROPHORESIS, 30(10), 1718-1723. doi:10.1002/elps.200800387Oliveira, G. C., Moccelini, S. K., Castilho, M., Terezo, A. J., Possavatz, J., Magalhães, M. R. L., & Dores, E. F. G. C. (2012). Biosensor based on atemoya peroxidase immobilised on modified nanoclay for glyphosate biomonitoring. Talanta, 98, 130-136. doi:10.1016/j.talanta.2012.06.059Songa, E. A., Somerset, V. S., Waryo, T., Baker, P. G. L., & Iwuoha, E. I. (2009). Amperometric nanobiosensor for quantitative determination of glyphosate and glufosinate residues in corn samples. Pure and Applied Chemistry, 81(1), 123-139. doi:10.1351/pac-con-08-01-15Khenifi, A., Derriche, Z., Forano, C., Prevot, V., Mousty, C., Scavetta, E., … Tonelli, D. (2009). Glyphosate and glufosinate detection at electrogenerated NiAl-LDH thin films. Analytica Chimica Acta, 654(2), 97-102. doi:10.1016/j.aca.2009.09.023Sánchez-Bayo, F., Hyne, R. V., & Desseille, K. L. (2010). An amperometric method for the detection of amitrole, glyphosate and its aminomethyl-phosphonic acid metabolite in environmental waters using passive samplers. Analytica Chimica Acta, 675(2), 125-131. doi:10.1016/j.aca.2010.07.013Aquino Neto, S., & de Andrade, A. R. (2009). Electrooxidation of glyphosate herbicide at different DSA® compositions: pH, concentration and supporting electrolyte effect. Electrochimica Acta, 54(7), 2039-2045. doi:10.1016/j.electacta.2008.07.019Méndez, M. A., Súarez, M. F., Cortés, M. T., & Sarria, V. M. (2007). Electrochemical properties and electro-aggregation of silver carbonate sol on polycrystalline platinum electrode and its electrocatalytic activity towards glyphosate oxidation. Electrochemistry Communications, 9(10), 2585-2590. doi:10.1016/j.elecom.2007.08.008COUTINHO, C., SILVA, M., CALEGARO, M., MACHADO, S., & MAZO, L. (2007). Investigation of copper dissolution in the presence of glyphosate using hydrodynamic voltammetry and chronoamperometry. Solid State Ionics, 178(1-2), 161-164. doi:10.1016/j.ssi.2006.10.027Songa, E. A., Arotiba, O. A., Owino, J. H. O., Jahed, N., Baker, P. G. L., & Iwuoha, E. I. (2009). Electrochemical detection of glyphosate herbicide using horseradish peroxidase immobilized on sulfonated polymer matrix. Bioelectrochemistry, 75(2), 117-123. doi:10.1016/j.bioelechem.2009.02.007Bratskaya, S., Golikov, A., Lutsenko, T., Nesterova, O., & Dudarchik, V. (2008). Charge characteristics of humic and fulvic acids: Comparative analysis by colloid titration and potentiometric titration with continuous pK-distribution function model. Chemosphere, 73(4), 557-563. doi:10.1016/j.chemosphere.2008.06.014De Paolis, F., & Kukkonen, J. (1997). Binding of organic pollutants to humic and fulvic acids: Influence of pH and the structure of humic material. Chemosphere, 34(8), 1693-1704. doi:10.1016/s0045-6535(97)00026-xWang, S., Hu, J., Li, J., & Dong, Y. (2009). Influence of pH, soil humic/fulvic acid, ionic strength, foreign ions and addition sequences on adsorption of Pb(II) onto GMZ bentonite. Journal of Hazardous Materials, 167(1-3), 44-51. doi:10.1016/j.jhazmat.2008.12.079Chen, C., & Wang, X. (2007). Sorption of Th (IV) to silica as a function of pH, humic/fulvic acid, ionic strength, electrolyte type. Applied Radiation and Isotopes, 65(2), 155-163. doi:10.1016/j.apradiso.2006.07.003Heineke, D., Franklin, S. J., & Raymond, K. N. (1994). Coordination Chemistry of Glyphosate: Structural and Spectroscopic Characterization of Bis(glyphosate)metal(III) Complexes. Inorganic Chemistry, 33(11), 2413-2421. doi:10.1021/ic00089a017Woertz, K., Tissen, C., Kleinebudde, P., & Breitkreutz, J. (2010). Performance qualification of an electronic tongue based on ICH guideline Q2. Journal of Pharmaceutical and Biomedical Analysis, 51(3), 497-506. doi:10.1016/j.jpba.2009.09.029Vlasov, Y., Legin, A., & Rudnitskaya, A. (2002). Electronic tongues and their analytical application. Analytical and Bioanalytical Chemistry, 373(3), 136-146. doi:10.1007/s00216-002-1310-2Masot, R., Alcañiz, M., Fuentes, A., Schmidt, F. C., Barat, J. M., Gil, L., … Soto, J. (2010). Design of a low-cost non-destructive system for punctual measurements of salt levels in food products using impedance spectroscopy. Sensors and Actuators A: Physical, 158(2), 217-223. doi:10.1016/j.sna.2010.01.010Campos, I., Alcañiz, M., Aguado, D., Barat, R., Ferrer, J., Gil, L., … Vivancos, J.-L. (2012). A voltammetric electronic tongue as tool for water quality monitoring in wastewater treatment plants. Water Research, 46(8), 2605-2614. doi:10.1016/j.watres.2012.02.029Campos, I., Masot, R., Alcañiz, M., Gil, L., Soto, J., Vivancos, J. L., … Martínez-Mañez., R. (2010). Accurate concentration determination of anions nitrate, nitrite and chloride in minced meat using a voltammetric electronic tongue. Sensors and Actuators B: Chemical, 149(1), 71-78. doi:10.1016/j.snb.2010.06.028García-Breijo, E., Barat, J. M., Torres, O. L., Grau, R., Gil, L., Ibáñez, J., … Fraile, R. (2008). Development of a puncture electronic device for electrical conductivity measurements throughout meat salting. Sensors and Actuators A: Physical, 148(1), 63-67. doi:10.1016/j.sna.2008.07.013Gil, L., Barat, J. M., Garcia-Breijo, E., Ibañez, J., Martínez-Máñez, R., Soto, J., … Toldrá, F. (2008). Fish freshness analysis using metallic potentiometric electrodes. Sensors and Actuators B: Chemical, 131(2), 362-370. doi:10.1016/j.snb.2007.11.052Labrador, R. H., Masot, R., Alcañiz, M., Baigts, D., Soto, J., Martínez-Mañez, R., … Barat, J. M. (2010). Prediction of NaCl, nitrate and nitrite contents in minced meat by using a voltammetric electronic tongue and an impedimetric sensor. Food Chemistry, 122(3), 864-870. doi:10.1016/j.foodchem.2010.02.049Toko, K. (2000). Taste sensor. Sensors and Actuators B: Chemical, 64(1-3), 205-215. doi:10.1016/s0925-4005(99)00508-0Scampicchio, M., Benedetti, S., Brunetti, B., & Mannino, S. (2006). Amperometric Electronic Tongue for the Evaluation of the Tea Astringency. Electroanalysis, 18(17), 1643-1648. doi:10.1002/elan.200603586Bleibaum, R. N., Stone, H., Tan, T., Labreche, S., Saint-Martin, E., & Isz, S. (2002). Comparison of sensory and consumer results with electronic nose and tongue sensors for apple juices. Food Quality and Preference, 13(6), 409-422. doi:10.1016/s0950-3293(02)00017-4Ivarsson, P., Holmin, S., Höjer, N.-E., Krantz-Rülcker, C., & Winquist, F. (2001). Discrimination of tea by means of a voltammetric electronic tongue and different applied waveforms. Sensors and Actuators B: Chemical, 76(1-3), 449-454. doi:10.1016/s0925-4005(01)00583-4Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1-17. doi:10.1016/0003-2670(86)80028-9Coutinho, C. F. B., & Mazo, L. H. (2005). Complexos metálicos com o herbicida glifosato: revisão. Química Nova, 28(6), 1038-1045. doi:10.1590/s0100-40422005000600019Luo, P., Zhang, F., & Baldwin, R. P. (1991). Constant-potential amperometric detection of underivatized amino acids and peptides at a copper electrode. Analytical Chemistry, 63(17), 1702-1707. doi:10.1021/ac00017a01

    A “humid electronic nose” for the detection of nerve agent mimics; a case of selective sensing of DCNP (a Tabun mimic)

    Full text link
    A humid electronic nose device based on pulse voltammetry has been applied to detect nerve agentsimulants in gas phase. The humid electronic nose consists in a polypropylene piece which containsan array of eight metallic electrodes (i.e., Ir, Rh, Pt, Au Ag, Co, Cu and Ni) divided into two sets of fourworking electrodes housed inside a homemade steel cylinder, and a salt bridge connection to a referenceelectrode. The electrochemical system is fitted to a nylon membrane damped with a background solutionof sodium tetraborate 0.01 M by a second polypropylene piece. The PCA analysis demonstrated that thesystem is able to discern principal organophosphorous nerve agent mimics (DCP, DCNP and DFP) fromorganophosphorous derivatives and some other potential interferents. Besides, the PLS quantificationanalysis showed sound accuracy in the concentration prediction for DCNP in air, good linearity and alimit of detection (LOD) of some a few ppm.Financial support from the Spanish Government (project MAT2012-38429-004) and the Generalitat Valenciana (project PROMETEO/2009/016) is gratefully acknowledged. L.P. is grateful to the Universitat Politecnica de Valencia for her grant.Pascual Vidal, L.; Campos Sánchez, I.; Bataller Prats, R.; Olguín Pinatti, CA.; García Breijo, E.; Martínez Mañez, R.; Soto Camino, J. (2014). A “humid electronic nose” for the detection of nerve agent mimics; a case of selective sensing of DCNP (a Tabun mimic). Sensors and Actuators B: Chemical. 192:134-142. https://doi.org/10.1016/j.snb.2013.10.089S13414219

    Characterization of embeddable potentiometric thick-film sensors for monitoring chloride penetration in concrete

    Full text link
    In order to monitor the chloride penetration processes, a potentiometric embedded thick-film sensor was developed. This paper includes the results of research on the characterization of Cl− sensors made of Ag/AgCl resistive pastes (materials, sensitivity and detection limit, reproducibility, reversibility and response time, long-term performance and reliability in the presence of interfering agents). Theoretical expressions have been developed to describe the potentiometric response including the presence of OH− and bromide ions. The study shows that thick-film sensors are able to monitor Cl− activity as a function of the redox potential. Sensors are also capable of providing reliable and continuous real-time information on phenomena related to the progress of the chloride penetration front in concrete specimens. These sensors are a promising tool because thick-film technology allows us to obtain miniaturized, low-cost, robust and stable long-term sensors for Cl− monitoring.The pre-doctoral scholarship granted to Roman Bataller Prats within the program "Formacion de Personal Investigador (FPI) 2012" from Universitat Politecnica de Valencia is gratefully acknowledged.Gandía-Romero, JM.; Bataller Prats, R.; Monzón, P.; Campos Sánchez, I.; Garcia-Breijo, E.; Valcuende Payá, MO.; Soto Camino, J. (2016). Characterization of embeddable potentiometric thick-film sensors for monitoring chloride penetration in concrete. Sensors and Actuators B: Chemical. 222:407-418. doi:10.1016/j.snb.2015.07.05640741822
    corecore