33 research outputs found

    The Impact of the Nucleosome Code on Protein-Coding Sequence Evolution in Yeast

    Get PDF
    Coding sequence evolution was once thought to be the result of selection on optimal protein function alone. Selection can, however, also act at the RNA level, for example, to facilitate rapid translation or ensure correct splicing. Here, we ask whether the way DNA works also imposes constraints on coding sequence evolution. We identify nucleosome positioning as a likely candidate to set up such a DNA-level selective regime and use high-resolution microarray data in yeast to compare the evolution of coding sequence bound to or free from nucleosomes. Controlling for gene expression and intra-gene location, we find a nucleosome-free “linker” sequence to evolve on average 5–6% slower at synonymous sites. A reduced rate of evolution in linker is especially evident at the 5′ end of genes, where the effect extends to non-synonymous substitution rates. This is consistent with regular nucleosome architecture in this region being important in the context of gene expression control. As predicted, codons likely to generate a sequence unfavourable to nucleosome formation are enriched in linker sequence. Amino acid content is likewise skewed as a function of nucleosome occupancy. We conclude that selection operating on DNA to maintain correct positioning of nucleosomes impacts codon choice, amino acid choice, and synonymous and non-synonymous rates of evolution in coding sequence. The results support the exclusion model for nucleosome positioning and provide an alternative interpretation for runs of rare codons. As the intimate association of histones and DNA is a universal characteristic of genic sequence in eukaryotes, selection on coding sequence composition imposed by nucleosome positioning should be phylogenetically widespread

    Stochastic Model of Protein–Protein Interaction: Why Signaling Proteins Need to Be Colocalized

    Get PDF
    Colocalization of proteins that are part of the same signal transduction pathway via compartmentalization, scaffold, or anchor proteins is an essential aspect of the signal transduction system in eukaryotic cells. If interaction must occur via free diffusion, then the spatial separation between the sources of the two interacting proteins and their degradation rates become primary determinants of the time required for interaction. To understand the role of such colocalization, we create a mathematical model of the diffusion based protein–protein interaction process. We assume that mRNAs, which serve as the sources of these proteins, are located at different positions in the cytoplasm. For large cells such as Drosophila oocytes we show that if the source mRNAs were at random locations in the cell rather than colocalized, the average rate of interactions would be extremely small, which suggests that localization is needed to facilitate protein interactions and not just to prevent cross-talk between different signaling modules

    Evolutionary and Physiological Importance of Hub Proteins

    Get PDF
    It has been claimed that proteins with more interaction partners (hubs) are both physiologically more important (i.e., less dispensable) and, owing to an assumed high density of binding sites, slow evolving. Not all analyses, however, support these results, probably because of biased and less-than reliable global protein interaction data. Here we provide the first examination of these issues using a comprehensive literature-curated dataset of well-substantiated protein interactions in Saccharomyces cerevisiae. Whereas use of less reliable yeast two-hybrid data alone can reject the possibility that local connectivity correlates with measures of dispensability, in higher quality datasets a relatively robust correlation is observed. In contrast, local connectivity does not correlate with the rate of protein evolution even in reliable datasets. This perhaps surprising lack of correlation with evolutionary rate appears in part to arise from the fact that hub proteins do not have a higher density of residues associated with binding. However, hub proteins do have at least one other set of unusual features, namely rapid turnover and regulation, as manifest in high mRNA decay rates and a large number of phosphorylation sites. This, we suggest, is an adaptation to minimize unwanted activation of pathways that might be mediated by adventitious binding to hubs, were they to actively persist longer than required at any given time point. We conclude that hub proteins are more important for cellular growth rate and under tight regulation but are not slow evolving

    Still Stratus Not Altocumulus: Further Evidence against the Date/Party Hub Distinction

    Get PDF
    Analysis of multi-validated protein interaction data reveals networks with greater interconnectivity than the more segregated structures seen in previously available data. To help visualize this, the authors draw comparisons between continuous stratus clouds and altocumulus clouds

    Stratus Not Altocumulus: A New View of the Yeast Protein Interaction Network

    Get PDF
    Systems biology approaches can reveal intermediary levels of organization between genotype and phenotype that often underlie biological phenomena such as polygenic effects and protein dispensability. An important conceptualization is the module, which is loosely defined as a cohort of proteins that perform a dedicated cellular task. Based on a computational analysis of limited interaction datasets in the budding yeast Saccharomyces cerevisiae, it has been suggested that the global protein interaction network is segregated such that highly connected proteins, called hubs, tend not to link to each other. Moreover, it has been suggested that hubs fall into two distinct classes: “party” hubs are co-expressed and co-localized with their partners, whereas “date” hubs interact with incoherently expressed and diversely localized partners, and thereby cohere disparate parts of the global network. This structure may be compared with altocumulus clouds, i.e., cotton ball–like structures sparsely connected by thin wisps. However, this organization might reflect a small and/or biased sample set of interactions. In a multi-validated high-confidence (HC) interaction network, assembled from all extant S. cerevisiae interaction data, including recently available proteome-wide interaction data and a large set of reliable literature-derived interactions, we find that hub–hub interactions are not suppressed. In fact, the number of interactions a hub has with other hubs is a good predictor of whether a hub protein is essential or not. We find that date hubs are neither required for network tolerance to node deletion, nor do date hubs have distinct biological attributes compared to other hubs. Date and party hubs do not, for example, evolve at different rates. Our analysis suggests that the organization of global protein interaction network is highly interconnected and hence interdependent, more like the continuous dense aggregations of stratus clouds than the segregated configuration of altocumulus clouds. If the network is configured in a stratus format, cross-talk between proteins is potentially a major source of noise. In turn, control of the activity of the most highly connected proteins may be vital. Indeed, we find that a fluctuation in steady-state levels of the most connected proteins is minimized

    Spatial Regulation and the Rate of Signal Transduction Activation

    Get PDF
    Of the many important signaling events that take place on the surface of a mammalian cell, activation of signal transduction pathways via interactions of cell surface receptors is one of the most important. Evidence suggests that cell surface proteins are not as freely diffusible as implied by the classic fluid mosaic model and that their confinement to membrane domains is regulated. It is unknown whether these dynamic localization mechanisms function to enhance signal transduction activation rate or to minimize cross talk among pathways that share common intermediates. To determine which of these two possibilities is more likely, we derive an explicit equation for the rate at which cell surface membrane proteins interact based on a Brownian motion model in the presence of endocytosis and exocytosis. We find that in the absence of any diffusion constraints, cell surface protein interaction rate is extremely high relative to cytoplasmic protein interaction rate even in a large mammalian cell with a receptor abundance of a mere two hundred molecules. Since a larger number of downstream signaling events needs to take place, each occurring at a much slower rate than the initial activation via association of cell surface proteins, we conclude that the role of co-localization is most likely that of cross-talk reduction rather than coupling efficiency enhancement

    Systemic influences of mammary cancer on monocytes in mice

    Get PDF
    SIMPLE SUMMARY: Using a mouse model of breast cancer driven by the mammary epithelial expression of the polyoma middle T oncoprotein in which the tumors progress from benign to malignant metastatic stages, we show that cancer causes an increase in circulating monocytes and a splenomegaly. This increase in monocyte number is due to their increased proliferation in the bone marrow and not turnover rates in the blood. Single cell sequencing also shows that new populations of monocytes do not arise during cancer. Cancer also drives systemic changes in the monocyte transcriptome, with a notable down-regulation of interferon signaling. These systemic influences start in the bone marrow but intensify in the blood. Comparison of cancer prone and cancer resistant mouse inbred strains carrying the same oncogene reveals that the genetic background of the strain causes different monocyte transcriptional changes. Similarly, a comparison of the mouse transcriptome to human breast cancer monocyte profiles indicates limited similarities, to the extent that interferon signaling is enhanced in humans. Systemic responses are different in the same model of cancer on different genetic backgrounds within a species and even greater changes are found across species. These data suggest that at the very least this mouse model will be limited when it comes to exploring the mechanism behind systemic changes in humans. ABSTRACT: There is a growing body of evidence that cancer causes systemic changes. These influences are most evident in the bone marrow and the blood, particularly in the myeloid compartment. Here, we show that there is an increase in the number of bone marrow, circulating and splenic monocytes by using mouse models of breast cancer caused by the mammary epithelial expression of the polyoma middle T antigen. Cancer does not affect ratios of classical to non-classical populations of monocytes in the circulation nor does it affect their half-lives. Single cell RNA sequencing also indicates that cancer does not induce any new monocyte populations. Cancer does not change the monocytic progenitor number in the bone marrow, but the proliferation rate of monocytes is higher, thus providing an explanation for the expansion of the circulating numbers. Deep RNA sequencing of these monocytic populations reveals that cancer causes changes in the classical monocyte compartment, with changes evident in bone marrow monocytes and even more so in the blood, suggesting influences in both compartments, with the down-regulation of interferon type 1 signaling and antigen presentation being the most prominent of these. Consistent with this analysis, down-regulated genes are enriched with STAT1/STAT2 binding sites in their promoter, which are transcription factors required for type 1 interferon signaling. However, these transcriptome changes in mice did not replicate those found in patients with breast cancer. Consequently, this mouse model of breast cancer may be insufficient to study the systemic influences of human cancer

    Depletion of somatic mutations in splicing-associated sequences in cancer genomes

    Get PDF
    Abstract Background An important goal of cancer genomics is to identify systematically cancer-causing mutations. A common approach is to identify sites with high ratios of non-synonymous to synonymous mutations; however, if synonymous mutations are under purifying selection, this methodology leads to identification of false-positive mutations. Here, using synonymous somatic mutations (SSMs) identified in over 4000 tumours across 15 different cancer types, we sought to test this assumption by focusing on coding regions required for splicing. Results Exon flanks, which are enriched for sequences required for splicing fidelity, have ~ 17% lower SSM density compared to exonic cores, even after excluding canonical splice sites. While it is impossible to eliminate a mutation bias of unknown cause, multiple lines of evidence support a purifying selection model above a mutational bias explanation. The flank/core difference is not explained by skewed nucleotide content, replication timing, nucleosome occupancy or deficiency in mismatch repair. The depletion is not seen in tumour suppressors, consistent with their role in positive tumour selection, but is otherwise observed in cancer-associated and non-cancer genes, both essential and non-essential. Consistent with a role in splicing modulation, exonic splice enhancers have a lower SSM density before and after controlling for nucleotide composition; moreover, flanks at the 5’ end of the exons have significantly lower SSM density than at the 3’ end. Conclusions These results suggest that the observable mutational spectrum of cancer genomes is not simply a product of various mutational processes and positive selection, but might also be shaped by negative selection
    corecore