30,171 research outputs found
On the notions of facets, weak facets, and extreme functions of the Gomory-Johnson infinite group problem
We investigate three competing notions that generalize the notion of a facet
of finite-dimensional polyhedra to the infinite-dimensional Gomory-Johnson
model. These notions were known to coincide for continuous piecewise linear
functions with rational breakpoints. We show that two of the notions, extreme
functions and facets, coincide for the case of continuous piecewise linear
functions, removing the hypothesis regarding rational breakpoints. We then
separate the three notions using discontinuous examples.Comment: 18 pages, 2 figure
Scaling and universality in coupled driven diffusive models
Inspired by the physics of magnetohydrodynamics (MHD) a simplified coupled
Burgers-like model in one dimension (1d), a generalization of the Burgers model
to coupled degrees of freedom, is proposed to describe 1dMHD. In addition to
MHD, this model serves as a 1d reduced model for driven binary fluid mixtures.
Here we have performed a comprehensive study of the universal properties of the
generalized d-dimensional version of the reduced model. We employ both
analytical and numerical approaches. In particular, we determine the scaling
exponents and the amplitude-ratios of the relevant two-point time-dependent
correlation functions in the model. We demonstrate that these quantities vary
continuously with the amplitude of the noise cross-correlation. Further our
numerical studies corroborate the continuous dependence of long wavelength and
long time-scale physics of the model on the amplitude of the noise
cross-correlations, as found in our analytical studies. We construct and
simulate lattice-gas models of coupled degrees of freedom in 1d, belonging to
the universality class of our coupled Burgers-like model, which display similar
behavior. We use a variety of numerical (Monte-Carlo and Pseudospectral
methods) and analytical (Dynamic Renormalization Group, Self-Consistent
Mode-Coupling Theory and Functional Renormalization Group) approaches for our
work. The results from our different approaches complement one another.
Possible realizations of our results in various nonequilibrium models are
discussed.Comment: To appear in JSTAT (2009); 52 pages in JSTAT format. Some figure
files have been replace
The structure of the infinite models in integer programming
The infinite models in integer programming can be described as the convex
hull of some points or as the intersection of halfspaces derived from valid
functions. In this paper we study the relationships between these two
descriptions. Our results have implications for corner polyhedra. One
consequence is that nonnegative, continuous valid functions suffice to describe
corner polyhedra (with or without rational data)
Software for cut-generating functions in the Gomory--Johnson model and beyond
We present software for investigations with cut generating functions in the
Gomory-Johnson model and extensions, implemented in the computer algebra system
SageMath.Comment: 8 pages, 3 figures; to appear in Proc. International Congress on
Mathematical Software 201
Solar models and electron screening
We investigate the sensitivity of the solar model to changes in the nuclear
reaction screening factors. We show that the sound speed profile as determined
by helioseismology certainly rules out changes in the screening factors
exceeding more than 10%. A slightly improved solar model could be obtained by
enhancing screening by about 5% over the Salpeter value. We also discuss how
envelope properties of the Sun depend on screening, too. We conclude that the
solar model can be used to help settling the on-going dispute about the
``correct'' screening factors.Comment: accepted for publication by Astron. Astrophy
Exercise and hypertrophic cardiomyopathy: Two incompatible entities?
A greater understanding of the pathogenic mechanisms underpinning hypertrophic cardiomyopathy (HCM) has translated to improved medical care and better survival of affected individuals. Historically these patients were considered to be at high risk of sudden cardiac death (SCD) during exercise; therefore, exercise recommendations were highly conservative and promoted a sedentary life style. There is emerging evidence that suggests that exercise in HCM has a favorable effect on cardiovascular remodeling and moderate exercise programs have not raised any safety concerns. Furthermore, individuals with HCM have a similar burden of atherosclerotic risk factors as the general population in whom exercise has been associated with a reduction in myocardial infarction, stroke, and heart failure, especially among those with a high-risk burden. Small studies revealed that athletes who choose to continue with regular competition do not demonstrate adverse outcomes when compared to those who discontinue sport, and active individuals implanted with an implantable cardioverter defibrillator do not have an increased risk of appropriate shocks or other adverse events. The recently published exercise recommendations from the European Association for Preventative Cardiology account for more contemporary evidence and adopt a more liberal stance regarding competitive and high intensity sport in individuals with low-risk HCM. This review addresses the issue of exercise in individuals with HCM, and explores current evidence supporting safety of exercise in HCM, potential caveats, and areas of further research
A minimum hypothesis explanation for an IMF with a lognormal body and power law tail
We present a minimum hypothesis model for an IMF that resembles a lognormal
distribution at low masses but has a distinct power-law tail. Even if the
central limit theorem ensures a lognormal distribution of condensation masses
at birth, a power-law tail in the distribution arises due to accretion from the
ambient cloud, coupled with a non-uniform (exponential) distribution of
accretion times.Comment: 2 pages, 1 figure, to appear in IMF@50, eds. E. Corbelli, F. Palla,
and H. Zinnecker, Kluwer, Astrophysics and Space Science Librar
Casimir stresses in active nematic films
We calculate the Casimir stresses in a thin layer of active fluid with nematic order. By using a stochastic hydrodynamic approach for an active fluid layer of finite thickness L, we generalize the Casimir stress for nematic liquid crystals in thermal equilibrium to active systems. We show that the active Casimir stress differs significantly from its equilibrium counterpart. For contractile activity, the active Casimir stress, although attractive like its equilibrium counterpart, diverges logarithmically as L approaches a threshold of the spontaneous flow instability from below. In contrast, for small extensile activity, it is repulsive, has no divergence at any L and has a scaling with L different from its equilibrium counterpart
- …
