367 research outputs found
A Model Checking based Converter Synthesis Approach for Embedded Systems
Protocol conversion problem involves identifying whether two or more protocols can be composed with or without an intermediary, referred to as a converter, to obtain a pre-specified desired behavior. We investigate this problem in formal setting and propose, for the first time, a temporal logic based automatic solution to the convertibility verification and synthesis. At its core, our technique is based on local model checking technique and determines the existence of the converter and if a converter exists, it is automatically synthesized. A number of key features of our technique distinguishes it from all existing formal and/or informal techniques. Firstly, we handle both data and control mismatches (for the first time), using a single unifying model checking based solution. Secondly, the proposed approach uses temporal logic for the specification of correct behaviors (unlike earlier automaton based specifications) which is both elegant and natural to express event ordering and data-matching requirements. Finally, we have have experimented extensively with the examples available in the existing literature to evaluate the applicability of our technique in wide range of applications
Efficacy and immunogenicity of a single dose of human papillomavirus vaccine compared to no vaccination or standard three and two-dose vaccination regimens: A systematic review of evidence from clinical trials.
OBJECTIVES: This study aimed to systematically review the literature on the efficacy and immunogenicity of single-dose HPV vaccination compared to no vaccination or multi-dose schedules among vaccine trial participants. METHODS: Medline, EMBASE, Global Health Database and Cochrane Central Register of Controlled Trials were searched for publications and conference abstracts (dated January 1999-August 2018) using MeSH and non-MeSH terms for human papillomavirus AND vaccines AND (immunogenicity OR efficacy/effectiveness) AND dosage. Search results were screened against pre-specified eligibility criteria. Data were extracted from included articles, and a narrative synthesis conducted on efficacy against HPV16/18 infection and humoral immunogenicity. RESULTS: Seven of 6,523 unique records identified were included in the review. Six were nested observational studies of participants randomised to receive two or three doses in three large HPV vaccine trials, in which some participants did not complete their allocated schedules. One small pilot study prospectively allocated participants to receive one or no vaccine dose. Frequency of HPV16/18 infection was low (e.g.  0.05 in all cases). Frequency of infection was significantly lower in one-dose recipients compared to unvaccinated controls (p < 0.01 for all infection endpoints in each study). HPV16/18 seropositivity rates were high in all HPV vaccine recipients (100% in three of four studies reporting this endpoint), though antibody levels were lower with one compared to two or three doses. CONCLUSIONS: This review supports the premise that one HPV vaccine dose may be as effective in preventing HPV infection as multi-dose schedules in healthy young women. However, it also highlights the paucity of available evidence from purpose-designed, prospectively-randomised trials. Results from ongoing clinical trials assessing the efficacy and immunogenicity of single-dose HPV vaccination compared to currently-recommended schedules are awaited
Methane, arsenic, selenium and the origins of the DMSO reductase family
Mononuclear molybdoenzymes of the dimethyl sulfoxide reductase (DMSOR) family catalyze a number of reactions essential to the carbon, nitrogen, sulfur, arsenic, and selenium biogeochemical cycles. These enzymes are also ancient, with many lineages likely predating the divergence of the last universal common ancestor into the Bacteria and Archaea domains. We have constructed rooted phylogenies for over 1,550 representatives of the DMSOR family using maximum likelihood methods to investigate the evolution of the arsenic biogeochemical cycle. The phylogenetic analysis provides compelling evidence that formylmethanofuran dehydrogenase B subunits, which catalyze the reduction of CO2 to formate during hydrogenotrophic methanogenesis, constitutes the most ancient lineage. Our analysis also provides robust support for selenocysteine as the ancestral ligand for the Mo/W atom. Finally, we demonstrate that anaerobic arsenite oxidase and respiratory arsenate reductase catalytic subunits represent a more ancient lineage of DMSORs compared to aerobic arsenite oxidase catalytic subunits, which evolved from the assimilatory nitrate reductase lineage. This provides substantial support for an active arsenic biogeochemical cycle on the anoxic Archean Earth. Our work emphasizes that the use of chalcophilic elements as substrates as well as the Mo/W ligand in DMSORs has indelibly shaped the diversification of these enzymes through deep time
Physiological Mechanisms of Tolerance to Drought and Heat in Major Pulses for Improving Yield under Stress Environments
Reduction in biomass and pollen fertility are the two major constraints resulting in poor grain yield in major pulses grown under rainfed agrosystem. Generally, pulses are encountered into both heat and drought stresses during terminal reproductive stages. Though pulses have many adaptive features to counter the adverse effects of various abiotic stresses but yield is substantially reduced when the magnitude of these stresses is very high. The factors have been identified to enhance grain yield under stress environments which include promotion of biomass in the above ground part enabling crops to reserve a maximum amount of photosynthesis and water in the plant system itself before the onset of drought and heat stresses during reproductive stages. Various physiological mechanisms and fertility enhancement components including genetic diversity in key traits have been discussed here to improve yield of pulses under stressed conditions
Secondary Prevention of Cervical Cancer : ASCO Resource–Stratified Guideline Update
Q2Q2PURPOSE:
To update resource-stratified, evidence-based recommendations on secondary prevention of cervical cancer globally.
METHODS:
American Society of Clinical Oncology convened a multidisciplinary, multinational Expert Panel to produce recommendations reflecting four resource-tiered settings. A review of existing guidelines, formal consensus-based process, and modified ADAPTE process to adapt existing guidelines was conducted. Other experts participated in formal consensus.
RESULTS:
This guideline update reflects changes in evidence since the previous update. Five existing guidelines were identified and reviewed, and adapted recommendations form the evidence base. Cost-effectiveness analyses provided indirect evidence to inform consensus, which resulted in ≥ 75% agreement.
RECOMMENDATIONS:
Human papillomavirus (HPV) DNA testing is recommended in all resource settings; visual inspection with acetic acid may be used in basic settings. Recommended age ranges and frequencies vary by the following setting: maximal: age 25-65 years, every 5 years; enhanced: age 30-65 years, if two consecutive negative tests at 5-year intervals, then every 10 years; limited: age 30-49 years, every 10 years; basic: age 30-49 years, one to three times per lifetime. For basic settings, visual assessment is used to determine treatment eligibility; in other settings, genotyping with cytology or cytology alone is used to determine treatment. For basic settings, treatment is recommended if abnormal triage results are obtained; in other settings, abnormal triage results followed by colposcopy is recommended. For basic settings, treatment options are thermal ablation or loop electrosurgical excision procedure; for other settings, loop electrosurgical excision procedure or ablation is recommended; with a 12-month follow-up in all settings. Women who are HIV-positive should be screened with HPV testing after diagnosis, twice as many times per lifetime as the general population. Screening is recommended at 6 weeks postpartum in basic settings; in other settings, screening is recommended at 6 months. In basic settings without mass screening, infrastructure for HPV testing, diagnosis, and treatment should be developed.https://orcid.org/0000-0001-7187-9946Revista Internacional - IndexadaCN
Dopamine Regulates Angiogenesis in Normal Dermal Wound Tissues
Cutaneous wound healing is a normal physiological process and comprises different phases. Among these phases, angiogenesis or new blood vessel formation in wound tissue plays an important role. Skin is richly supplied by sympathetic nerves and evidences indicate the significant role of the sympathetic nervous system in cutaneous wound healing. Dopamine (DA) is an important catecholamine neurotransmitter released by the sympathetic nerve endings and recent studies have demonstrated the potent anti-angiogenic action of DA, which is mediated through its D2 DA receptors. We therefore postulate that this endogenous catecholamine neurotransmitter may have a role in the neovascularization of dermal wound tissues and subsequently in the process of wound healing. In the present study, the therapeutic efficacy of D2 DA receptor antagonist has been investigated for faster wound healing in a murine model of full thickness dermal wound. Our results indicate that treatment with specific D2 DA receptor antagonist significantly expedites the process of full thickness normal dermal wound healing in mice by inducing angiogenesis in wound tissues. The underlined mechanisms have been attributed to the up-regulation of homeobox transcription factor HoxD3 and its target α5β1 integrin, which play a pivotal role in wound angiogenesis. Since D2 DA receptor antagonists are already in clinical use for other disorders, these results have significant translational value from the bench to the bedside for efficient wound management along with other conventional treatment modalities
Dopamine Regulates Mobilization of Mesenchymal Stem Cells during Wound Angiogenesis
Angiogenesis is an important step in the complex biological and molecular events leading to successful healing of dermal wounds. Among the different cellular effectors of wound angiogenesis, the role of mesenchymal stem cells (MSCs) is of current interest due to their transdifferentiation and proangiogenic potentials. Skin is richly innervated by sympathetic nerves which secrete dopamine (DA) and we have recently shown that concentration of DA present in synaptic cleft can significantly inhibit wound tissue neovascularization. As recent reports indicate that MSCs by mobilizing into wound bed play an important role in promoting wound angiogenesis, we therefore investigated the effect of DA on the migration of MSCs in wound tissues. DA acted through its D2 receptors present in the MSCs to inhibit their mobilization to the wound beds by suppressing Akt phosphorylation and actin polymerization. In contrast, this inhibitory effect of DA was reversed after treatment with specific DA D2 receptor antagonist. Increased mobilization of MSCs was demonstrated in the wound site following blockade of DA D2 receptor mediated actions, and this in turn was associated with significantly more angiogenesis in wound tissues. This study is of translational value and indicates use of DA D2 receptor antagonists to stimulate mobilization of these stem cells for faster regeneration of damaged tissues
Novel Role of Phosphorylation-Dependent Interaction between FtsZ and FipA in Mycobacterial Cell Division
The bacterial divisome is a multiprotein complex. Specific protein-protein interactions specify whether cell division occurs optimally, or whether division is arrested. Little is known about these protein-protein interactions and their regulation in mycobacteria. We have investigated the interrelationship between the products of the Mycobacterium tuberculosis gene cluster Rv0014c-Rv0019c, namely PknA (encoded by Rv0014c) and FtsZ-interacting protein A, FipA (encoded by Rv0019c) and the products of the division cell wall (dcw) cluster, namely FtsZ and FtsQ. M. smegmatis strains depleted in components of the two gene clusters have been complemented with orthologs of the respective genes of M. tuberculosis. Here we identify FipA as an interacting partner of FtsZ and FtsQ and establish that PknA-dependent phosphorylation of FipA on T77 and FtsZ on T343 is required for cell division under oxidative stress. A fipA knockout strain of M. smegmatis is less capable of withstanding oxidative stress than the wild type and showed elongation of cells due to a defect in septum formation. Localization of FtsQ, FtsZ and FipA at mid-cell was also compromised. Growth and survival defects under oxidative stress could be functionally complemented by fipA of M. tuberculosis but not its T77A mutant. Merodiploid strains of M. smegmatis expressing the FtsZ(T343A) showed inhibition of FtsZ-FipA interaction and Z ring formation under oxidative stress. Knockdown of FipA led to elongation of M. tuberculosis cells grown in macrophages and reduced intramacrophage growth. These data reveal a novel role of phosphorylation-dependent protein-protein interactions involving FipA, in the sustenance of mycobacterial cell division under oxidative stress
Inactivation of PNKP by mutant ATXN3 triggers apoptosis by activating the DNA damage-response pathway in SCA3.
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is an untreatable autosomal dominant neurodegenerative disease, and the most common such inherited ataxia worldwide. The mutation in SCA3 is the expansion of a polymorphic CAG tri-nucleotide repeat sequence in the C-terminal coding region of the ATXN3 gene at chromosomal locus 14q32.1. The mutant ATXN3 protein encoding expanded glutamine (polyQ) sequences interacts with multiple proteins in vivo, and is deposited as aggregates in the SCA3 brain. A large body of literature suggests that the loss of function of the native ATNX3-interacting proteins that are deposited in the polyQ aggregates contributes to cellular toxicity, systemic neurodegeneration and the pathogenic mechanism in SCA3. Nonetheless, a significant understanding of the disease etiology of SCA3, the molecular mechanism by which the polyQ expansions in the mutant ATXN3 induce neurodegeneration in SCA3 has remained elusive. In the present study, we show that the essential DNA strand break repair enzyme PNKP (polynucleotide kinase 3'-phosphatase) interacts with, and is inactivated by, the mutant ATXN3, resulting in inefficient DNA repair, persistent accumulation of DNA damage/strand breaks, and subsequent chronic activation of the DNA damage-response ataxia telangiectasia-mutated (ATM) signaling pathway in SCA3. We report that persistent accumulation of DNA damage/strand breaks and chronic activation of the serine/threonine kinase ATM and the downstream p53 and protein kinase C-d pro-apoptotic pathways trigger neuronal dysfunction and eventually neuronal death in SCA3. Either PNKP overexpression or pharmacological inhibition of ATM dramatically blocked mutant ATXN3-mediated cell death. Discovery of the mechanism by which mutant ATXN3 induces DNA damage and amplifies the pro-death signaling pathways provides a molecular basis for neurodegeneration due to PNKP inactivation in SCA3, and for the first time offers a possible approach to treatment.This study was funded by NIH grant NS073976 to TKH and a John Sealy Grant to PSS
- …