114 research outputs found

    Exploring Quantum Gravity with Very-High-Energy Gamma-Ray Instruments - Prospects and Limitations

    Full text link
    Some models for quantum gravity (QG) violate Lorentz invariance and predict an energy dependence of the speed of light, leading to a dispersion of high-energy gamma-ray signals that travel over cosmological distances. Limits on the dispersion from short-duration substructures observed in gamma-rays emitted by gamma-ray bursts (GRBs) at cosmological distances have provided interesting bounds on Lorentz invariance violation (LIV). Recent observations of unprecedentedly fast flares in the very-high energy gamma-ray emission of the active galactic nuclei (AGNs) Mkn 501 in 2005 and PKS 2155-304 in 2006 resulted in the most constraining limits on LIV from light-travel observations, approaching the Planck mass scale, at which QG effects are assumed to become important. I review the current status of LIV searches using GRBs and AGN flare events, and discuss limitations of light-travel time analyses and prospects for future instruments in the gamma-ray domain.Comment: 11 pages, 4 figures, proceedings of "Science with the New Generation of High Energy Gamma-Ray Experiments", Euganean Spa Area, Padova: October 8-10, 200

    Gamma-ray burst observations with new generation imaging atmospheric Cerenkov Telescopes in the FERMI era

    Full text link
    After the launch and successful beginning of operations of the FERMI satellite, the topics related to high-energy observations of gamma-ray bursts have obtained a considerable attention by the scientific community. Undoubtedly, the diagnostic power of high-energy observations in constraining the emission processes and the physical conditions of gamma-ray burst is relevant. We briefly discuss how gamma-ray burst observations with ground-based imaging array Cerenkov telescopes, in the GeV-TeV range, can compete and cooperate with FERMI observations, in the MeV-GeV range, to allow researchers to obtain a more detailed and complete picture of the prompt and afterglow phases of gamma-ray bursts.Comment: 9 pages, two figures. Proceeding for the 6th "Science with the New Generation of High Energy Gamma-Ray Experiments" worksho

    The hunt for cosmic neutrino sources with IceCube

    Full text link
    IceCube is a cubic-kilometer neutrino telescope under construction at the geographic South Pole. Once completed it will comprise 4800 optical sensors deployed on 80 vertical strings at depths in the ice between 1450 and 2450 meters. Part of the array is already operational and data was recorded in the configurations with 9 (year 2006/2007), 22 (year 2007/2008) and 40-strings (year 2008/2009) respectively. Here we report preliminary results on the search for point-like neutrino sources using data collected with the first 22 strings (IC-22).Comment: 10 pages, 3 figures, prepared for the Scineghe08 Conference, Padova/Italy (2008

    Fermi Gamma-ray Space Telescope Observations of Gamma-ray Pulsars

    Full text link
    The Large Area Telescope on the recently launched Fermi Gamma-ray Space Telescope (formerly GLAST), with its large field of view and effective area, combined with its excellent timing capabilities, is poised to revolutionize the field of gamma-ray astrophysics. The large improvement in sensitivity over EGRET is expected to result in the discovery of many new gamma-ray pulsars, which in turn should lead to fundamental advances in our understanding of pulsar physics and the role of neutron stars in the Galaxy. Almost immediately after launch, Fermi clearly detected all previously known gamma-ray pulsars and is producing high precision results on these. An extensive radio and X-ray timing campaign of known (primarily radio) pulsars is being carried out in order to facilitate the discovery of new gamma-ray pulsars. In addition, a highly efficient time-differencing technique is being used to conduct blind searches for radio-quiet pulsars, which has already resulted in new discoveries. I present some recent results from searches for pulsars carried out on Fermi data, both blind searches, and using contemporaneous timing of known radio pulsars.Comment: To appear in the Proceedings of the 6th Workshop on Science with the New Generation of High Energy Gamma-Ray Experiments (SciNeGHE '08), held in Padova, 8-10 October 2008, Eds. D. Bastieri, R. Rand

    Status and recent results of MAGIC

    Get PDF
    MAGIC is a single-dish Cherenkov telescope located on La Palma (Spain), hence with an optimal view on the Northern sky. Sensitive in the 30 GeV-30 TeV energy band, it is nowadays the only ground-based instrument being able to measure high-energy gamma-rays below 100 GeV. We review the most recent experimental results obtained using MAGIC.Comment: Contribution to the Proceedings of "Science with the new generation of high energy gamma-ray experiments", Abano Terme, Italy, 8-10 October 200

    High energy emission from galaxy clusters and particle acceleration due to MHD turbulence

    Full text link
    In the next years the FERMI gamma ray telescope and the Cherenkov telescopes will put very stringent constraints to models of gamma ray emission from galaxy clusters providing crucial information on relativistic particles in the inter-galactic-medium. We derive the broad band non-thermal spectrum of galaxy clusters in the context of general calculations in which relativistic particles (protons and secondary electrons due to proton-proton collisions) interact with MHD turbulence generated in the cluster volume during cluster mergers, and discuss the importance of future gamma ray observations.Comment: 9 pages, 2 figures, in proceedings of "Science with the new generation of high energy gamma ray experiments", AIP Conf. Proc. Series, D.Bastieri and R.Rando ed
    corecore