233 research outputs found

    Nonequilibrium Quantum Phase Transitions in the Dicke Model

    Full text link
    We establish a set of nonequilibrium quantum phase transitions in the Dicke model by considering a monochromatic nonadiabatic modulation of the atom-field coupling. For weak driving the system exhibits a set of sidebands which allow the circumvention of the no-go theorem which otherwise forbids the occurence of superradiant phase transitions. At strong driving we show that the system exhibits a rich multistable structure and exhibits both first- and second-order nonequilibrium quantum phase transitions.Comment: 4 pages, 3 Figures, and supplementary material. This new version contains corrected typos, new references and new versions of the figures. Published by Physical Review Letter

    Floquet stroboscopic divisibility in non-Markovian dynamics

    Full text link
    We provide a general discussion of the Liouvillian spectrum for a system coupled to a non-Markovian bath using Floquet theory. This approach is suitable when the system is described by a time-convolutionless master equation with time-periodic rates. Surprisingly, the periodic nature of rates allow us to have a stroboscopic divisible dynamical map at discrete times, which we refer to as Floquet stroboscopic divisibility. We illustrate the general theory for a Schr\"odinger cat which is roaming inside a non-Markovian bath, and demonstrate the appearance of stroboscopic revival of the cat at later time after its death. Our theory may have profound implications in entropy production in non-equilibrium systems.Comment: We changed the title and explained in more detail the definition of non-Markovian dynamics used in the manuscrip

    Photon-resolved Floquet theory in open quantum systems

    Full text link
    Photon-resolved Floquet theory keeps track of the photon exchange of a quantum system with a coherent driving field. It thus complements the standard full-counting statistics that counts the number of photons exchanged with incoherent photon modes giving rise to dissipation. In this paper, we introduce a unifying framework describing both situations. We develop methods suitable for an analytical evaluation of low-order cumulants of photonic probability distributions. Within this framework we analyze the two-mode Jaynes-Cummings model to demonstrate that the Photon-resolved Floquet theory and the standard full-counting statistics make consistent statistical predictions. Interestingly, we find that the photon-flux fluctuations diverge for vanishing dissipation, which can be related to an entanglement effect between the driven matter system and the driving field. To substantiate our results, we use our framework to describe efficient photon up-conversion in an ac-driven lambda system, that is characterized by a high signal-to-noise ratio. As the framework is non-perturbative and predicts fluctuations, it paves the way towards non-perturbative spectroscopy, which will assist to improve metrological methods.Comment: 25 pages, 6 figures, 4 appendices. Comments are welcom
    corecore