25 research outputs found

    Functional supramolecular additives

    Get PDF

    Introduction of nature's complexity in engineered blood-compatible biomaterials

    No full text
    \u3cp\u3eBiomaterials with excellent blood-compatibility are needed for applications in vascular replacement therapies, such as vascular grafts, heart valves and stents, and in extracorporeal devices such as hemodialysis machines and blood-storage bags. The modification of materials that are being used for blood-contacting devices has advanced from passive surface modifications to the design of more complex, smart biomaterials that respond to relevant stimuli from blood to counteract coagulation. Logically, the main source of inspiration for the design of new biomaterials has been the endogenous endothelium. Endothelial regulation of hemostasis is complex and involves a delicate interplay of structural components and feedback mechanisms. Thus, challenges to develop new strategies for blood-compatible biomaterials now lie in incorporating true feedback controlled mechanisms that can regulate blood compatibility in a dynamic way. Here, supramolecular material systems are highlighted as they provide a promising platform to introduce dynamic reciprocity, due to their inherent dynamic nature.\u3c/p\u3

    Cell and protein fouling properties of polymeric mixtures containing supramolecular poly(ethylene glycol) additives

    No full text
    \u3cp\u3eFouling properties of new biomaterials are important for the performance of a material in a biological environment. Here, a set of three supramolecular polymeric additives consisting of ureidopyrimidinone (UPy)-functionalized poly(ethylene glycol) (UPyPEG) were formulated with UPy-modified polycaprolactone into thin supramolecular material films. The antifouling properties of these material films were determined by investigation of the relation of cell adhesion and protein adsorption on these materials films. The presence of the UPyPEG additives at the surface of the films was evident by an increased hydrophilicity. Adhesion of human epithelial and endothelial cells was strongly reduced for two of the UPyPEG-containing films. Analysis of adsorption of the first three proteins from the Vroman series, albumin, γ-globulin, and fibrinogen, using quartz crystal microbalance with dissipation in combination with viscoelastic modeling, revealed that the surfaces containing the UPyPEG additives had a limited effect on adsorption of these proteins. Despite a limited reduction of protein adsorption, UPyPEG-containing mixtures were non-cell-adhesive, which shows that non-cell-adhesive properties of supramolecular polymer surfaces are not always directly correlated to protein adsorption.\u3c/p\u3

    Supramolecular antifouling additives for robust and efficient functionalization of elastomeric materials: molecular design matters

    No full text
    The ultimate functionality of elastomeric materials can be largely influenced by the molecular design of antifouling additives that interact through directed hydrogen bonding bisurea motifs. Herein, three additives, composed of matching bisurea groups and antifouling oligo(ethylene glycol) (OEG) functionalities, are judiciously designed. The first additive is composed of one bisurea and one OEG, the second additive of one bisurea and two OEGs, and the third additive of two bisurea and one OEG. On solution-cast films, non-cell adhesive properties are dependent on the amount of incorporated OEG irrespective of the bisurea design; however, on 3D electrospun scaffolds only the additive that consists of two bisurea moieties connected via an OEG functionality ensures proper non-cell adhesive properties. Interestingly, robust non-cell adhesive properties are maintained, both with repeated cell seeding and after partial enzymatic degradation of the scaffold. These results highlight the importance of additive design in supramolecular functionalization and show that translation from simple 2D solution-cast films to 3D electrospun scaffolds is not trivial with respect to additive presentation and functionality

    Supramolecular antifouling additives for robust and efficient functionalization of elastomeric materials:molecular design matters

    No full text
    \u3cp\u3eThe ultimate functionality of elastomeric materials can be largely influenced by the molecular design of antifouling additives that interact through directed hydrogen bonding bisurea motifs. Herein, three additives, composed of matching bisurea groups and antifouling oligo(ethylene glycol) (OEG) functionalities, are judiciously designed. The first additive is composed of one bisurea and one OEG, the second additive of one bisurea and two OEGs, and the third additive of two bisurea and one OEG. On solution-cast films, non-cell adhesive properties are dependent on the amount of incorporated OEG irrespective of the bisurea design; however, on 3D electrospun scaffolds only the additive that consists of two bisurea moieties connected via an OEG functionality ensures proper non-cell adhesive properties. Interestingly, robust non-cell adhesive properties are maintained, both with repeated cell seeding and after partial enzymatic degradation of the scaffold. These results highlight the importance of additive design in supramolecular functionalization and show that translation from simple 2D solution-cast films to 3D electrospun scaffolds is not trivial with respect to additive presentation and functionality.\u3c/p\u3

    Combinatorial functionalization with bisurea‐peptides and antifouling bisurea additives of a supramolecular elastomeric biomaterial

    No full text
    The bioactive additive toolbox to functionalize supramolecular elastomeric materials expands rapidly. Here we have set an explorative step toward screening of complex combinatorial functionalization with antifouling and three peptide-containing additives in a bisurea-based supramolecular system. Thorough investigation of surface properties of thin films with contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy, was correlated to cell-adhesion of endothelial and smooth muscle cells to apprehend their respective predictive values for functional biomaterial development. Peptides were presented at the surface alone, and in combinatorial functionalization with the oligo(ethylene glycol)-based non-cell adhesive additive. The bisurea-RGD additive was cell-adhesive in all conditions, whereas the endothelial cell-specific bisurea-REDV showed limited bioactive properties in all chemical nano-environments. Also, aspecific functionality was observed for a bisurea-SDF1α peptide. These results emphasize that special care should be taken in changing the chemical nano-environment with peptide functionalization

    Combinatorial functionalization with bisurea-peptides and antifouling bisurea additives of a supramolecular elastomeric biomaterial

    No full text
    The bioactive additive toolbox to functionalize supramolecular elastomeric materials expands rapidly. Here we have set an explorative step toward screening of complex combinatorial functionalization with antifouling and three peptide-containing additives in a bisurea-based supramolecular system. Thorough investigation of surface properties of thin films with contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy, was correlated to cell-adhesion of endothelial and smooth muscle cells to apprehend their respective predictive values for functional biomaterial development. Peptides were presented at the surface alone, and in combinatorial functionalization with the oligo(ethylene glycol)-based non-cell adhesive additive. The bisurea-RGD additive was cell-adhesive in all conditions, whereas the endothelial cell-specific bisurea-REDV showed limited bioactive properties in all chemical nano-environments. Also, aspecific functionality was observed for a bisurea-SDF1α peptide. These results emphasize that special care should be taken in changing the chemical nano-environment with peptide functionalization

    Combinatorial functionalization with bisurea-peptides and antifouling bisurea additives of a supramolecular elastomeric biomaterial

    No full text
    \u3cp\u3eThe bioactive additive toolbox to functionalize supramolecular elastomeric materials expands rapidly. Here we have set an explorative step toward screening of complex combinatorial functionalization with antifouling and three peptide-containing additives in a bisurea-based supramolecular system. Thorough investigation of surface properties of thin films with contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy, was correlated to cell-adhesion of endothelial and smooth muscle cells to apprehend their respective predictive values for functional biomaterial development. Peptides were presented at the surface alone, and in combinatorial functionalization with the oligo(ethylene glycol)-based non-cell adhesive additive. The bisurea-RGD additive was cell-adhesive in all conditions, whereas the endothelial cell-specific bisurea-REDV showed limited bioactive properties in all chemical nano-environments. Also, aspecific functionality was observed for a bisurea-SDF1α peptide. These results emphasize that special care should be taken in changing the chemical nano-environment with peptide functionalization.\u3c/p\u3
    corecore