35 research outputs found
Molecular Separation by Using Active and Passive Microfluidic chip Designs: A Comprehensive Review
Separation and identification of molecules and biomolecules such as nucleic acids, proteins, and polysaccharides from complex fluids are known to be important due to unmet needs in various applications. Generally, many different separation techniques, including chromatography, electrophoresis, and magnetophoresis, have been developed to identify the target molecules precisely. However, these techniques are expensive and time consuming. “Lab-on-a-chip” systems with low cost per device, quick analysis capabilities, and minimal sample consumption seem to be ideal candidates for separating particles, cells, blood samples, and molecules. From this perspective, different microfluidic-based techniques have been extensively developed in the past two decades to separate samples with different origins. In this review, “lab-on-a-chip” methods by passive, active, and hybrid approaches for the separation of biomolecules developed in the past decade are comprehensively discussed. Due to the wide variety in the field, it will be impossible to cover every facet of the subject. Therefore, this review paper covers passive and active methods generally used for biomolecule separation. Then, an investigation of the combined sophisticated methods is highlighted. The spotlight also will be shined on the elegance of separation successes in recent years, and the remainder of the article explores how these permit the development of novel techniques
Nanopillared Chitosan/Gelatin Films: A Biomimetic Approach for Improved Osteogenesis
Biomimicry strategies, inspired from natural organization of living organisms, are being widely used in the design of nanobiomaterials. Particularly, nonlithographic techniques have shown immense potential in the facile fabrication of nanostructured surfaces at large-scale production. Orthopedic biomaterials or coatings possessing extracellular matrix-like nanoscale features induce desirable interactions between the bone tissue and implant surface, also known as osseointegration. In this study, nanopillared chitosan/gelatin (C/G) films were fabricated using nanoporous anodic alumina molds, and their antibacterial properties as well as osteogenesis potential were analyzed by comparing to the flat C/G films and tissue culture polystyrene as controls. In vitro analysis of the expression of RUNX2, osteopontion, and osteocalcin genes for mesenchymal stem cells as well as osteoblast-like Saos-2 cells was found to be increased for the cells grown on nano C/G films, indicating early-stage osteogenic differentiation. Moreover, the mineralization tests (quantitative calcium analysis and alizarin red staining) showed that nanotopography significantly enhanced the mineralization capacity of both cell lines. This work may provide a new perspective of biomimetic surface topography fabrication for orthopedic implant coatings with superior osteogenic differentiation capacity and fast bone regeneration potential.Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [1059B141601323