2,533 research outputs found

    Restoring the sting to metric preheating

    Get PDF
    The relative growth of field and metric perturbations during preheating is sensitive to initial conditions set in the preceding inflationary phase. Recent work suggests this may protect super-Hubble metric perturbations from resonant amplification during preheating. We show that this possibility is fragile and sensitive to the specific form of the interactions between the inflaton and other fields. The suppression is naturally absent in two classes of preheating in which either (1) the vacua of the non-inflaton fields during inflation are deformed away from the origin, or (2) the effective masses of non-inflaton fields during inflation are small but during preheating are large. Unlike the simple toy model of a g2ϕ2χ2g^2 \phi^2 \chi^2 coupling, most realistic particle physics models contain these other features. Moreover, they generically lead to both adiabatic and isocurvature modes and non-Gaussian scars on super-Hubble scales. Large-scale coherent magnetic fields may also appear naturally.Comment: 6 pages, 3 ps figures, RevTex, revised discussion of backreaction and new figure. To appear Phys. Rev. D (Rapid Communication

    Preheating of the nonminimally coupled inflaton field

    Get PDF
    We investigate preheating of an inflaton field ϕ\phi coupled nonminimally to a spacetime curvature. In the case of a self-coupling inflaton potential V(ϕ)=λϕ4/4V(\phi)=\lambda \phi^4/4, the dynamics of preheating changes by the effect of the negative ξ\xi. We find that the nonminimal coupling works in two ways. First, since the initial value of inflaton field for reheating becomes smaller with the increase of ∣ξ∣|\xi|, the evolution of the inflaton quanta is delayed for fixed λ\lambda. Second, the oscillation of the inflaton field is modified and the nonadiabatic change around ϕ=0\phi=0 occurs significantly. That makes the resonant band of the fluctuation field wider. Especially for strong coupling regimes ∣ξ∣≫1|\xi| \gg 1, the growth of the inflaton flutuation is dominated by the resonance due to the nonminimal coupling, which leads to the significant enhancement of low momentum modes. Although the final variance of the inflaton fluctuation does notchange significantly compared with the minimally coupled case, we have found that the energy transfer from the homogeneous inflaton to created particles efficiently occurs for ξ<−60\xi<-60.Comment: 13pages, 11figure

    Oscillons in Scalar Field Theories: Applications in Higher Dimensions and Inflation

    Full text link
    The basic properties of oscillons -- localized, long-lived, time-dependent scalar field configurations -- are briefly reviewed, including recent results demonstrating how their existence depends on the dimensionality of spacetime. Their role on the dynamics of phase transitions is discussed, and it is shown that oscillons may greatly accelerate the decay of metastable vacuum states. This mechanism for vacuum decay -- resonant nucleation -- is then applied to cosmological inflation. A new inflationary model is proposed which terminates with fast bubble nucleation.Comment: 11 pages, 4 figures, to appear in Int. J. Mod. Phys.

    General Relativistic effects in preheating

    Full text link
    General relativistic effects in the form of metric perturbations are usually neglected in the preheating era that follows inflation. We argue that in realistic multi-field models these effects are in fact crucial, and the fully coupled system of metric and quantum field fluctuations needs to be considered. Metric perturbations are resonantly amplified, breaking the scale-invariance of the primordial spectrum, and in turn stimulate scalar field resonances via gravitational rescattering. This non-gravitationally dominated nonlinear growth of gravitational fluctuations may have significant effects on the Doppler peaks in the cosmic background radiation, primordial black hole formation, gravitational waves and nonthermal symmetry restoration.Comment: 10 pages. 1 .ps fig. Matches version to appear in Phys Lett

    IgG anti-apolipoprotein A-1 antibodies in patients with systemic lupus erythematosus are associated with disease activity and corticosteroid therapy: an observational study.

    Get PDF
    IgG anti-apolipoprotein A-1 (IgG anti-apoA-1) antibodies are present in patients with systemic lupus erythematosus (SLE) and may link inflammatory disease activity and the increased risk of developing atherosclerosis and cardiovascular disease (CVD) in these patients. We carried out a rigorous analysis of the associations between IgG anti-apoA-1 levels and disease activity, drug therapy, serology, damage, mortality and CVD events in a large British SLE cohort

    A new twist to preheating

    Full text link
    Metric perturbations typically strengthen field resonances during preheating. In contrast we present a model in which the super-Hubble field resonances are completely {\em suppressed} when metric perturbations are included. The model is the nonminimal Fakir-Unruh scenario which is exactly solvable in the long-wavelength limit when metric perturbations are included, but exhibits exponential growth of super-Hubble modes in their absence. This gravitationally enhanced integrability is exceptional, both for its rarity and for the power with which it illustrates the importance of including metric perturbations in consistent studies of preheating. We conjecture a no-go result - there exists no {\em single-field} model with growth of cosmologically-relevant metric perturbations during preheating.Comment: 6 pages, 3 figures, Version to appear in Physical Review

    Are Kaluza-Klein modes enhanced by parametric resonance?

    Get PDF
    We study parametric amplification of Kaluza-Klein (KK) modes in a higher DD-dimensional generalized Kaluza-Klein theory, which was originally considered by Mukohyama in the narrow resonance case. It was suggested that KK modes can be enhanced by an oscillation of a scale of compactification by the dd-dimensional sphere Sd (d=D−4)S^d~(d=D-4) and by the direct product Sd1×Sd2 (d1+d2=D−4)S^{d_1}\times S^{d_2}~(d_1+d_2=D-4). We extend this past work to the more general case where initial values of the scale of compactification and the quantum number of the angular momentum ll of KK modes are not small. We perform analytic approaches based on the Mathieu equation as well as numerical calculations, and find that the expansion of the universe rapidly makes the KK field deviate from instability bands. As a result, KK modes are not enhanced sufficiently in an expanding universe in these two classes of models.Comment: 15 pages, 5 figure
    • …
    corecore