1,861 research outputs found
Preheating of the nonminimally coupled inflaton field
We investigate preheating of an inflaton field coupled nonminimally to
a spacetime curvature. In the case of a self-coupling inflaton potential
, the dynamics of preheating changes by the effect of
the negative . We find that the nonminimal coupling works in two ways.
First, since the initial value of inflaton field for reheating becomes
smaller with the increase of , the evolution of the inflaton quanta is
delayed for fixed . Second, the oscillation of the inflaton field is
modified and the nonadiabatic change around occurs significantly. That
makes the resonant band of the fluctuation field wider. Especially for strong
coupling regimes , the growth of the inflaton flutuation is
dominated by the resonance due to the nonminimal coupling, which leads to the
significant enhancement of low momentum modes. Although the final variance of
the inflaton fluctuation does notchange significantly compared with the
minimally coupled case, we have found that the energy transfer from the
homogeneous inflaton to created particles efficiently occurs for .Comment: 13pages, 11figure
Restoring the sting to metric preheating
The relative growth of field and metric perturbations during preheating is
sensitive to initial conditions set in the preceding inflationary phase. Recent
work suggests this may protect super-Hubble metric perturbations from resonant
amplification during preheating. We show that this possibility is fragile and
sensitive to the specific form of the interactions between the inflaton and
other fields. The suppression is naturally absent in two classes of preheating
in which either (1) the vacua of the non-inflaton fields during inflation are
deformed away from the origin, or (2) the effective masses of non-inflaton
fields during inflation are small but during preheating are large. Unlike the
simple toy model of a coupling, most realistic particle
physics models contain these other features. Moreover, they generically lead to
both adiabatic and isocurvature modes and non-Gaussian scars on super-Hubble
scales. Large-scale coherent magnetic fields may also appear naturally.Comment: 6 pages, 3 ps figures, RevTex, revised discussion of backreaction and
new figure. To appear Phys. Rev. D (Rapid Communication
Oscillons in Scalar Field Theories: Applications in Higher Dimensions and Inflation
The basic properties of oscillons -- localized, long-lived, time-dependent
scalar field configurations -- are briefly reviewed, including recent results
demonstrating how their existence depends on the dimensionality of spacetime.
Their role on the dynamics of phase transitions is discussed, and it is shown
that oscillons may greatly accelerate the decay of metastable vacuum states.
This mechanism for vacuum decay -- resonant nucleation -- is then applied to
cosmological inflation. A new inflationary model is proposed which terminates
with fast bubble nucleation.Comment: 11 pages, 4 figures, to appear in Int. J. Mod. Phys.
Inflationary Reheating in Grand Unified Theories
Grand unified theories may display multiply interacting fields with strong
coupling dynamics. This poses two new problems: (1) What is the nature of
chaotic reheating after inflation, and (2) How is reheating sensitive to the
mass spectrum of these theories ? We answer these questions in two interesting
limiting cases and demonstrate an increased efficiency of reheating which
strongly enhances non-thermal topological defect formation, including monopoles
and domain walls. Nevertheless, the large fluctuations may resolve this
monopole problem via a modified Dvali-Liu-Vachaspati mechanism in which
non-thermal destabilsation of discrete symmetries occurs at reheating.Comment: 4 pages, 5 ps figures - 1 colour, Revtex. Further (colour & 3-D)
figures available from http://www.sissa.it/~bassett/reheating/ . Matched to
version to appear in Phys. Rev. let
IgG anti-apolipoprotein A-1 antibodies in patients with systemic lupus erythematosus are associated with disease activity and corticosteroid therapy: an observational study.
IgG anti-apolipoprotein A-1 (IgG anti-apoA-1) antibodies are present in patients with systemic lupus erythematosus (SLE) and may link inflammatory disease activity and the increased risk of developing atherosclerosis and cardiovascular disease (CVD) in these patients. We carried out a rigorous analysis of the associations between IgG anti-apoA-1 levels and disease activity, drug therapy, serology, damage, mortality and CVD events in a large British SLE cohort
Massless Metric Preheating
Can super-Hubble metric perturbations be amplified exponentially during
preheating ? Yes. An analytical existence proof is provided by exploiting the
conformal properties of massless inflationary models. The traditional conserved
quantity \zeta is non-conserved in many regions of parameter space. We include
backreaction through the homogeneous parts of the inflaton and preheating
fields and discuss the role of initial conditions on the post-preheating
power-spectrum. Maximum field variances are strongly underestimated if metric
perturbations are ignored. We illustrate this in the case of strong
self-interaction of the decay products. Without metric perturbations,
preheating in this case is very inefficient. However, metric perturbations
increase the maximum field variances and give alternative channels for the
resonance to proceed. This implies that metric perturbations can have a large
impact on calculations of relic abundances of particles produced during
preheating.Comment: 8 pages, 4 colour figures. Version to appear in Phys. Rev. D.
Contains substantial new analysis of the ranges of parameter space for which
large changes to the inflation-produced power spectrum are expecte
A new twist to preheating
Metric perturbations typically strengthen field resonances during preheating.
In contrast we present a model in which the super-Hubble field resonances are
completely {\em suppressed} when metric perturbations are included. The model
is the nonminimal Fakir-Unruh scenario which is exactly solvable in the
long-wavelength limit when metric perturbations are included, but exhibits
exponential growth of super-Hubble modes in their absence. This gravitationally
enhanced integrability is exceptional, both for its rarity and for the power
with which it illustrates the importance of including metric perturbations in
consistent studies of preheating. We conjecture a no-go result - there exists
no {\em single-field} model with growth of cosmologically-relevant metric
perturbations during preheating.Comment: 6 pages, 3 figures, Version to appear in Physical Review
Black hole production in tachyonic preheating
We present fully non-linear simulations of a self-interacting scalar field in
the early universe undergoing tachyonic preheating. We find that density
perturbations on sub-horizon scales which are amplified by tachyonic
instability maintain long range correlations even during the succeeding
parametric resonance, in contrast to the standard models of preheating
dominated by parametric resonance. As a result the final spectrum exhibits
memory and is not universal in shape. We find that throughout the subsequent
era of parametric resonance the equation of state of the universe is almost
dust-like, hence the Jeans wavelength is much smaller than the horizon scale.
If our 2D simulations are accurate reflections of the situation in 3D, then
there are wide regions of parameter space ruled out by over-production of black
holes. It is likely however that realistic parameter values, consistent with
COBE/WMAP normalisation, are safetly outside this black hole over-production
region.Comment: 6pages, 7figures, figures correcte
- …