1,765 research outputs found
High Frequency Quantum Admittance and Noise Measurement with an On-chip Resonant Circuit
By coupling a quantum detector, a superconductor-insulator-superconductor
junction, to a Josephson junction \textit{via} a resonant circuit we probe the
high frequency properties, namely the ac complex admittance and the current
fluctuations of the Josephson junction at the resonant frequencies. The
admittance components show frequency dependent singularities related to the
superconducting density of state while the noise exhibits a strong frequency
dependence, consistent with theoretical predictions. The circuit also allows to
probe separately the emission and absorption noise in the quantum regime of the
superconducting resonant circuit at equilibrium. At low temperature the
resonant circuit exhibits only absorption noise related to zero point
fluctuations, whereas at higher temperature emission noise is also present.Comment: 15 pages, 15 figure
Spin orbit coupling at the level of a single electron
We utilize electron counting techniques to distinguish a spin conserving fast
tunneling process and a slower process involving spin flips in
AlGaAs/GaAs-based double quantum dots. By studying the dependence of the rates
on the interdot tunnel coupling of the two dots, we find that as many as 4% of
the tunneling events occur with a spin flip related to spin-orbit coupling in
GaAs. Our measurement has a fidelity of 99 % in terms of resolving whether a
tunneling event occurred with a spin flip or not
High kinetic inductance microwave resonators made by He-Beam assisted deposition of tungsten nanowires
We evaluate the performance of hybrid microwave resonators made by combining sputtered Nb thin films with Tungsten nanowires grown with a He-beam induced deposition technique. Depending on growth conditions, the nanowires have a typical width w [35 - 75] nm and thickness t [5 - 40] nm. We observe a high normal state resistance R [65 - 150] Ω / which together with a critical temperature T c [4 - 6] K ensures a high kinetic inductance making the resonator strongly nonlinear. Both lumped and coplanar waveguide resonators were fabricated and measured at low temperature exhibiting internal quality factors up to 3990 at 4.5 GHz in the few photon regime. Analyzing the wire length, temperature, and microwave power dependence, we extracted a kinetic inductance for the W nanowire of L K 15 pH / which is 250 times higher than the geometrical inductance, and a Kerr non-linearity as high as K W, He / 2 π = 200 ± 120 Hz / photon at 4.5 GHz. The nanowires made with the helium focused ion beam are thus versatile objects to engineer compact, high impedance, superconducting environments with a mask and resist free direct write process
Fresh inflation: a warm inflationary model from a zero temperature initial state
A two-components mixture fluid which complies with the gamma law is
considered in the framework of inflation with finite temperature. The model is
developed for a quartic scalar potential without symmetry breaking. The
radiation energy density is assumed to be zero when inflation starts and
remains below the GUT temperature during the inflationary stage. Furthermore,
provides the necessary number of e-folds and sufficient radiation energy
density to GUT baryogenesis can take place near the minimum energetic
configuration.Comment: 11 pages, no figures, to be published in Phys. Rev.
Equilibria-based Probabilistic Model Checking for Concurrent Stochastic Games
Probabilistic model checking for stochastic games enables formal verification
of systems that comprise competing or collaborating entities operating in a
stochastic environment. Despite good progress in the area, existing approaches
focus on zero-sum goals and cannot reason about scenarios where entities are
endowed with different objectives. In this paper, we propose probabilistic
model checking techniques for concurrent stochastic games based on Nash
equilibria. We extend the temporal logic rPATL (probabilistic alternating-time
temporal logic with rewards) to allow reasoning about players with distinct
quantitative goals, which capture either the probability of an event occurring
or a reward measure. We present algorithms to synthesise strategies that are
subgame perfect social welfare optimal Nash equilibria, i.e., where there is no
incentive for any players to unilaterally change their strategy in any state of
the game, whilst the combined probabilities or rewards are maximised. We
implement our techniques in the PRISM-games tool and apply them to several case
studies, including network protocols and robot navigation, showing the benefits
compared to existing approaches
Exploring tandem ruthenium-catalyzed hydrogen transfer and SNAr chemistry
A hydrogen-transfer strategy for the catalytic functionalization of benzylic alcohols via electronic arene activation, accessing a diverse range of bespoke diaryl ethers and aryl amines in excellent isolated yields (38 examples, 70% average yield), is reported. Taking advantage of the hydrogen-transfer approach, the oxidation level of the functionalized products can be selected by judicious choice of simple and inexpensive additives
Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems
We show that, even in the most favorable case, the motion of a small
spherical tracer suspended in a fluid of the same density may differ from the
corresponding motion of an ideal passive particle. We demonstrate furthermore
how its dynamics may be applied to target trajectories in Hamiltonian systems.Comment: See home page http://lec.ugr.es/~julya
Machine learning based IoT Intrusion Detection System:an MQTT case study (MQTT-IoT-IDS2020 Dataset)
The Internet of Things (IoT) is one of the main research fields in the Cybersecurity domain. This is due to (a) the increased dependency on automated device, and (b) the inadequacy of general-purpose Intrusion Detection Systems (IDS) to be deployed for special purpose networks usage. Numerous lightweight protocols are being proposed for IoT devices communication usage. One of the distinguishable IoT machine-to-machine communication protocols is Message Queuing Telemetry Transport (MQTT) protocol. However, as per the authors best knowledge, there are no available IDS datasets that include MQTT benign or attack instances and thus, no IDS experimental results available. In this paper, the effectiveness of six Machine Learning (ML) techniques to detect MQTT-based attacks is evaluated. Three abstraction levels of features are assessed, namely, packet-based, unidirectional flow, and bidirectional flow features. An MQTT simulated dataset is generated and used for the training and evaluation processes. The dataset is released with an open access licence to help the research community further analyse the accompanied challenges. The experimental results demonstrated the adequacy of the proposed ML models to suit MQTT-based networks IDS requirements. Moreover, the results emphasise on the importance of using flow-based features to discriminate MQTT-based attacks from benign traffic, while packet-based features are sufficient for traditional networking attacks
Quantum key distribution with entangled photons generated on demand by a quantum dot
Quantum key distribution-exchanging a random secret key relying on a quantum mechanical resource-is the core feature of secure quantum networks. Entanglement-based protocols offer additional layers of security and scale favorably with quantum repeaters, but the stringent requirements set on the photon source have made their use situational so far. Semiconductor-based quantum emitters are a promising solution in this scenario, ensuring on-demand generation of near-unity-fidelity entangled photons with record-low multiphoton emission, the latter feature countering some of the best eavesdropping attacks. Here, we use a coherently driven quantum dot to experimentally demonstrate a modified Ekert quantum key distribution protocol with two quantum channel approaches: both a 250-m-long single-mode fiber and in free space, connecting two buildings within the campus of Sapienza University in Rome. Our field study highlights that quantum-dot entangled photon sources are ready to go beyond laboratory experiments, thus opening the way to real-life quantum communication
- …