8 research outputs found

    Biochar and Chitosan Regulate Antioxidant Defense and Methylglyoxal Detoxification Systems and Enhance Salt Tolerance in Jute (<i>Corchorus olitorius</i> L.)

    No full text
    We investigated the role of biochar and chitosan in mitigating salt stress in jute (Corchorus olitorius L. cv. O-9897) by exposing twenty-day-old seedlings to three doses of salt (50, 100, and 150 mM NaCl). Biochar was pre-mixed with the soil at 2.0 g kg−1 soil, and chitosan-100 was applied through irrigation at 100 mg L−1. Exposure to salt stress notably increased lipid peroxidation, hydrogen peroxide content, superoxide radical levels, electrolyte leakage, lipoxygenase activity, and methylglyoxal content, indicating oxidative damage in the jute plants. Consequently, the salt-stressed plants showed reduced growth, biomass accumulation, and disrupted water balance. A profound increase in proline content was observed in response to salt stress. Biochar and chitosan supplementation significantly mitigated the deleterious effects of salt stress in jute by stimulating both non-enzymatic (e.g., ascorbate and glutathione) and enzymatic (e.g., ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, glutathione reductase superoxide dismutase, catalase, peroxidase, glutathione S-transferase, glutathione peroxidase) antioxidant systems and enhancing glyoxalase enzyme activities (glyoxalase I and glyoxalase II) to ameliorate reactive oxygen species damage and methylglyoxal toxicity, respectively. Biochar and chitosan supplementation increased oxidative stress tolerance and improved the growth and physiology of salt-affected jute plants, while also significantly reducing Na+ accumulation and ionic toxicity and decreasing the Na+/K+ ratio. These findings support a protective role of biochar and chitosan against salt-induced damage in jute plants

    Nanobiotechnological Approaches to Enhance Drought Tolerance in <i>Catharanthus roseus</i> Plants Using Salicylic Acid in Bulk and Nanoform

    No full text
    Drought has a detrimental effect on crop production, affecting economically important plants’ growth rates and development. Catharanthus roseus is an important medicinal plant that produces many pharmacologically active compounds, some of which have significant antitumor activity. The effect of bulk salicylic acid (SA) and salicylic acid nanoparticles (SA-NPs) were evaluated on water-stressed Catharanthus roseus plants. The results showed that SA and SA-NPs alleviated the negative effects of drought in the treated plants by increasing their shoot and root weights, relative water content, leaf area index, chlorophyll content, and total alkaloids percentage. From the results, a low concentration (0.05 mM) of SA-NPs exerted positive effects on the treated plants, while the best results of the bulk SA were recorded after using the highest concentration (0.1 mM). Both treatments increased the expression level of WRKY1, WRKY2, WRKY40, LEA, and MYC2 genes, while the mRNA level of MPKK1 and MPK6 did not show a significant change. This study discussed the importance of SA-NPs in the induction of drought stress tolerance even when used in low concentrations, in contrast to bulk SA, which exerts significant results only at higher concentrations

    Pre-Harvest Application of Salicylic Acid, Abscisic Acid, and Methyl Jasmonate Conserve Bioactive Compounds of Strawberry Fruits during Refrigerated Storage

    No full text
    The short shelf-life and loss of bioactive compounds of strawberry fruit are the most important problems during strawberry refrigerated storage. This study was carried out to evaluate the effect of the pre-harvest foliar application of salicylic acid (SA) (2 and 4 mM), abscisic acid (ABA) (0.25 and 0.50 mM), and methyl jasmonate (MeJA) (0.25 and 0.50 mM) three times, 10 d apart, at fruit development and ripening stages on storage ability and bioactive compounds of strawberry fruit (cv. Festival) stored at 4 °C for 12 d. Our results showed that fruit obtained from both concentrations of ABA and 0.25 mM MeJA was firmer and had higher total soluble solids (TSS) than fruit from non-treated plants. However, all previous applications had no significant effect on weight loss, pH, or color. Applications of 4 mM SA and 0.25 mM MeJA conserved fruit from ascorbic acid (AsA) loss compared to control at the end of the storage period. In addition, all pre-harvest applications remained higher in total phenolic compounds (TPC) and anthocyanin contents compared to controls at the last storage period. Hence, the pre-harvest application of SA, ABA, and MeJA could be used to conserve TPC and anthocyanin as well as the quality of strawberry fruits during refrigerated storage

    Pre-Harvest Application of Salicylic Acid, Abscisic Acid, and Methyl Jasmonate Conserve Bioactive Compounds of Strawberry Fruits during Refrigerated Storage

    No full text
    The short shelf-life and loss of bioactive compounds of strawberry fruit are the most important problems during strawberry refrigerated storage. This study was carried out to evaluate the effect of the pre-harvest foliar application of salicylic acid (SA) (2 and 4 mM), abscisic acid (ABA) (0.25 and 0.50 mM), and methyl jasmonate (MeJA) (0.25 and 0.50 mM) three times, 10 d apart, at fruit development and ripening stages on storage ability and bioactive compounds of strawberry fruit (cv. Festival) stored at 4 &deg;C for 12 d. Our results showed that fruit obtained from both concentrations of ABA and 0.25 mM MeJA was firmer and had higher total soluble solids (TSS) than fruit from non-treated plants. However, all previous applications had no significant effect on weight loss, pH, or color. Applications of 4 mM SA and 0.25 mM MeJA conserved fruit from ascorbic acid (AsA) loss compared to control at the end of the storage period. In addition, all pre-harvest applications remained higher in total phenolic compounds (TPC) and anthocyanin contents compared to controls at the last storage period. Hence, the pre-harvest application of SA, ABA, and MeJA could be used to conserve TPC and anthocyanin as well as the quality of strawberry fruits during refrigerated storage

    Optimization of Carotenoids Production from Rhodotorula sp. Strain ATL72 for Enhancing Its Biotechnological Applications

    No full text
    Rhodotorula yeasts which are known as carotenogenic yeasts have a great industrial value due to their ability to produce carotenoids. In particular, the isolated yeast Rhodotorula sp. (strain ATL72) has been reported to be a promising producer of high concentrations of carotenoids. A combination of central composite design (CCD) and Plackett&ndash;Burman (PB) design was used to optimize carotenoids produced by this yeast. The optimum production of carotenoids was completed when the yeast was grown in a production medium composed of 3.7 g/L malt extract, 7.7 g/L fructose, 9 g/L urea, 35 g/L NaCl, and 1 g/L yeast extract at 27.5 &deg;C, pH 6.7, and 180 rpm. Two batch runs in 1 L and 7 L bioreactors were conducted which increased the productivity of carotenoid concentration from 21.5 mg/L after 98 h of incubation at the level of the shake flask to 229.9 mg/L after 47 h of incubation at the level of 7 L bioreactor. The carotenoid pigment was extracted in dimethylsulfoxide (DMSO), acetone, petroleum ether, and sodium chloride, and subsequently identified and characterized using UV-visible scanning, thin layer chromatography, and gas chromatography/mass spectrometry

    The Development of a Green Innovative Bioactive Film for Industrial Application as a New Emerging Technology to Protect the Quality of Fruits

    No full text
    Today, the most significant challenge encountered by food manufacturers is degradation in the food quality during storage, which is countered by expensive packing, which causes enormous monetary and environmental costs. Edible packaging is a potential alternative for protecting food quality and improving shelf life by delaying microbial growth and providing moisture and gas barrier properties. For the first time, the current article reports the preparation of the new films from Ditriterpenoids and Secomeliacins isolated from Melia azedarach (Dharek) Azadirachta indica plants to protect the quality of fruits. After evaluating these films, their mechanical, specific respirational, coating crystal elongation, elastic, water vapor transmission rate (WVTR), film thickness, and nanoindentation test properties are applied to apple fruit for several storage periods: 0, 3, 6, 9 days. The fruits were evaluated for postharvest quality by screening several essential phytochemical, physiological responses under film coating and storage conditions. It was observed that prepared films were highly active during storage periods. Coated fruits showed improved quality due to the protection of the film, which lowered the transmission rate and enhanced the diffusion rate, followed by an increase in the shelf life. The coating crystals were higher in Film-5 and lower activity in untreated films. It was observed that the application of films through dipping was a simple technique at a laboratory scale, whereas extrusion and spraying were preferred on a commercial scale. The phytochemicals screening of treated fruits during the storage period showed that a maximum of eight important bioactive compounds were present in fruits after the treatment of films. It was resolved that new active films (1–5) were helpful in the effective maintenance of fruit quality and all essential compounds during storage periods. It was concluded that these films could be helpful for fruits growers and the processing industry to maintain fruit quality during the storage period as a new emerging technology

    Assessment of the Heavy Metals Pollution and Ecological Risk in Sediments of Mediterranean Sea Drain Estuaries in Egypt and Phytoremediation Potential of Two Emergent Plants

    No full text
    Environmental pollution and its eco-toxicological impacts have become a large and interesting concern worldwide as a result of fast urbanization, population expansion, sewage discharge, and heavy industrial development. Nine heavy metals (Pb, Cd, Fe, Mn, Zn, Ni, Cu, Cr, and Co) were evaluated in 20 sediment samples from the estuaries of four major drains along the Mediterranean shoreline (Nile Delta coast) to determine the possible ecological effect of high heavy metal concentrations as well as roots and shoots of two common macrophytes (Cyperus alopecuroides and Persicaria salicifolia). For sediment, single- and multi-elemental standard indices were used to measure ecological risk. Data revealed high contents of heavy metals, for which the mean values of heavy metals in sediment followed a direction of Fe &gt; Mn &gt; Co &gt; Zn &gt; Cu &gt; Ni &gt; Cr &gt; Pb &gt; Cd, Fe &gt; Mn &gt; Co &gt; Ni &gt; Zn &gt; Cu &gt; Cr &gt; Pb &gt; Cd and Fe &gt; Mn &gt; Zn &gt; Co &gt; Cu &gt; Ni &gt; Cr &gt; Pb &gt; Cd for drains stream, estuaries, and Mediterranean coast, respectively. Mn, Cr, Zn, and Pb were found to be within Canadian Soil Quality Guidelines (CSQGD) and U.S. Environmental Protection Agency Guidelines (US-EPA) limitations, except for Zn and Pb in drain streams, which were above the US-EPA limits, whereas Cd, Co, Cu, and Ni indicated a high ecological risk index. This high quantity of contaminants might be linked to unabated manufacturing operations, which can bio-accumulate in food systems and create significant health issues in people. C. alopecuroides root demonstrated a more efficient accumulation of all metals than the shoot system. For most heavy metals, C. alopecuroides had the highest root BAF levels with the exception of Ni and Pb in P. salicifolia. As a result, C. alopecuroides might be employed as a possible phytoextractor of these dangerous metals, while P. salicifolia could be used as a hyper-accumulator of Ni and Pb. The policymaker must consider strict rules and restrictions against uncontrolled industrial operations, particularly in the Nile Delta near water streams

    Towards Better Grafting: SCoT and CDDP Analyses for Prediction of the Tomato Rootstocks Performance under Drought Stress

    No full text
    This study aims to predict the behavior of different tomato rootstocks under drought stress conditions. SCoT and CDDP analyses were employed to characterize the genetic relatedness among a commercial drought-sensitive tomato hybrid (cv. Bark) and four wild tomato accessions (LA2711, LA1995, LA3845, and LA4285) known for their tolerance to adverse conditions. The Bark plants were grafted onto the aforementioned wild accessions and self-grafted as control, and then the behavior of all graft unions was followed under normal and drought stress conditions. Our results showed a general genotype-dependent better growth and yield of heterografts than autografts under all growth conditions. Furthermore, clustering analysis based on growth, yield quantity and quality traits, and the leaf content of minerals, ABA, GA3, and proline, in addition to the activity of APX, POD, and DHAR reflected the same grouping pattern of the studied rootstocks exhibited by SCoT and CDDP. The identical grouping pattern supports the utilization of SCoT and CDDP as a robust screening tool helpful to predict the physiological and agronomical behavior of grafting on different tomato rootstocks. Furthermore, grafting could be a cost-efficient alternative method to improve drought tolerance in sensitive tomato genotypes
    corecore