3,054 research outputs found

    Incentive-compatible route coordination of crowdsourced resources

    Full text link
    Technical ReportWith the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresen-ce-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent’s flexibility is exploited to maximize the coverage of a mobility field, with an objective to maximize the revenue collected from satisfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1-approximation algorithm to solve the 2 problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent’s truthfulness about its flexibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments

    Rational coordination of crowdsourced resources for geo-temporal request satisfaction

    Full text link
    Existing mobile devices roaming around the mobility field should be considered as useful resources in geo-temporal request satisfaction. We refer to the capability of an application to access a physical device at particular geographical locations and times as GeoPresence, and we pre- sume that mobile agents participating in GeoPresence-capable applica- tions should be rational, competitive, and willing to deviate from their routes if given the right incentive. In this paper, we define the Hitch- hiking problem, which is that of finding the optimal assignment of re- quests with specific spatio-temporal characteristics to competitive mobile agents subject to spatio-temporal constraints. We design a mechanism that takes into consideration the rationality of the agents for request sat- isfaction, with an objective to maximize the total profit of the system. We analytically prove the mechanism to be convergent with a profit com- parable to that of a 1/2-approximation greedy algorithm, and evaluate its consideration of rationality experimentally.Supported in part by NSF Grants; #1430145, #1414119, #1347522, #1239021, and #1012798

    Multi-capacity bin packing with dependent items and its application to the packing of brokered workloads in virtualized environments

    Full text link
    Providing resource allocation with performance predictability guarantees is increasingly important in cloud platforms, especially for data-intensive applications, in which performance depends greatly on the available rates of data transfer between the various computing/storage hosts underlying the virtualized resources assigned to the application. Existing resource allocation solutions either assume that applications manage their data transfer between their virtualized resources, or that cloud providers manage their internal networking resources. With the increased prevalence of brokerage services in cloud platforms, there is a need for resource allocation solutions that provides predictability guarantees in settings, in which neither application scheduling nor cloud provider resources can be managed/controlled by the broker. This paper addresses this problem, as we define the Network-Constrained Packing (NCP) problem of finding the optimal mapping of brokered resources to applications with guaranteed performance predictability. We prove that NCP is NP-hard, and we define two special instances of the problem, for which exact solutions can be found efficiently. We develop a greedy heuristic to solve the general instance of the NCP problem , and we evaluate its efficiency using simulations on various application workloads, and network models.This work was done while author was at Boston University. It was partially supported by NSF CISE awards #1430145, #1414119, #1239021 and #1012798. (1430145 - NSF CISE; 1414119 - NSF CISE; 1239021 - NSF CISE; 1012798 - NSF CISE

    Incentive compatible route coordination of crowdsourced resources and its application to GeoPresence-as-a-Service

    Full text link
    With the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresen- ce-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent's exibility is exploited to maximize the coverage of a mo- bility field, with an objective to maximize the revenue collected from sat- isfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1 2 -approximation algorithm to solve the problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent's truthfulness about its exibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments.Supported in part by NSF Grants, #1430145, #1414119, #1347522, #1239021, and #1012798

    Mechanism design for spatio-temporal request satisfaction in mobile networks

    Full text link
    Mobile agents participating in geo-presence-capable crowdsourcing applications should be presumed rational, competitive, and willing to deviate from their routes if given the right incentive. In this paper, we design a mechanism that takes into consideration this rationality for request satisfaction in such applications. We propose the Geo-temporal Request Satisfaction (GRS) problem to be that of finding the optimal assignment of requests with specific spatio-temporal characteristics to competitive mobile agents subject to spatio-temporal constraints. The objective of the GRS problem is to maximize the total profit of the system subject to our rationality assumptions. We define the problem formally, prove that it is NP-Complete, and present a practical solution mechanism, which we prove to be convergent, and which we evaluate experimentally.National Science Foundation (1012798, 0952145, 0820138, 0720604, 0735974

    Scheduling of data-intensive workloads in a brokered virtualized environment

    Full text link
    Providing performance predictability guarantees is increasingly important in cloud platforms, especially for data-intensive applications, for which performance depends greatly on the available rates of data transfer between the various computing/storage hosts underlying the virtualized resources assigned to the application. With the increased prevalence of brokerage services in cloud platforms, there is a need for resource management solutions that consider the brokered nature of these workloads, as well as the special demands of their intra-dependent components. In this paper, we present an offline mechanism for scheduling batches of brokered data-intensive workloads, which can be extended to an online setting. The objective of the mechanism is to decide on a packing of the workloads in a batch that minimizes the broker's incurred costs, Moreover, considering the brokered nature of such workloads, we define a payment model that provides incentives to these workloads to be scheduled as part of a batch, which we analyze theoretically. Finally, we evaluate the proposed scheduling algorithm, and exemplify the fairness of the payment model in practical settings via trace-based experiments

    Network-constrained packing of brokered workloads in virtualized environments

    Full text link
    Providing resource allocation with performance predictability guarantees is increasingly important in cloud platforms, especially for data-intensive applications, in which performance depends greatly on the available rates of data transfer between the various computing/storage hosts underlying the virtualized resources assigned to the application. Existing resource allocation solutions either assume that applications manage their data transfer between their virtualized resources, or that cloud providers manage their internal networking resources.With the increased prevalence of brokerage services in cloud platforms, there is a need for resource allocation solutions that provides predictability guarantees in settings, in which neither application scheduling nor cloud provider resources can be managed/controlled by the broker. This paper addresses this problem, as we define the Network-Constrained Packing (NCP)problem of finding the optimal mapping of brokered resources to applications with guaranteed performance predictability. We prove that NCP is NP-hard, and we define two special instances of the problem, for which exact solutions can be found efficiently. We develop a greedy heuristic to solve the general instance of the NCP problem, and we evaluate its efficiency using simulations on various application workloads, and network models.This work is supported by NSF CISE CNS Award #1347522, # 1239021, # 1012798

    What’s in it for me? Incentive-compatible route coordination of crowdsourced resources

    Full text link
    With the recent trend in crowdsourcing, i.e., using the power of crowds to assist in satisfying demand, the pool of resources suitable for GeoPresence-capable systems has expanded to include already roaming devices, such as mobile phones, and moving vehicles. We envision an environment, in which the motion of these crowdsourced mobile resources is coordinated, according to their preexisting schedules to satisfy geo-temporal demand on a mobility field. In this paper, we propose an incentive compatible route coordination mechanism for crowdsourced resources, in which participating mobile agents satisfy geo-temporal requests in return for monetary rewards. We define the Flexible Route Coordination (FRC) problem, in which an agent’s flexibility is exploited to maximize the coverage of a mobility field, with an objective to maximize the revenue collected from satisfied paying requests. Given that the FRC problem is NP-hard, we define an optimal algorithm to plan the route of a single agent on a graph with evolving labels, then we use that algorithm to define a 1/2-approximation algorithm to solve the problem in its general model, with multiple agents. Moreover, we define an incentive compatible, rational, and cash-positive payment mechanism, which guarantees that an agent’s truthfulness about its flexibility is an ex-post Nash equilibrium strategy. Finally, we analyze the proposed mechanisms theoretically, and evaluate their performance experimentally using real mobility traces from urban environments.Supported in part by NSF Grants, #1430145, #1414119, #1347522, #1239021, and #1012798
    • …
    corecore