10 research outputs found

    Self-Organizing Maps with Variable Input Length for Motif Discovery and Word Segmentation

    Full text link
    Time Series Motif Discovery (TSMD) is defined as searching for patterns that are previously unknown and appear with a given frequency in time series. Another problem strongly related with TSMD is Word Segmentation. This problem has received much attention from the community that studies early language acquisition in babies and toddlers. The development of biologically plausible models for word segmentation could greatly advance this field. Therefore, in this article, we propose the Variable Input Length Map (VILMAP) for Motif Discovery and Word Segmentation. The model is based on the Self-Organizing Maps and can identify Motifs with different lengths in time series. In our experiments, we show that VILMAP presents good results in finding Motifs in a standard Motif discovery dataset and can avoid catastrophic forgetting when trained with datasets with increasing values of input size. We also show that VILMAP achieves results similar or superior to other methods in the literature developed for the task of word segmentation

    A Semi-Supervised Self-Organizing Map with Adaptive Local Thresholds

    Full text link
    In the recent years, there is a growing interest in semi-supervised learning, since, in many learning tasks, there is a plentiful supply of unlabeled data, but insufficient labeled ones. Hence, Semi-Supervised learning models can benefit from both types of data to improve the obtained performance. Also, it is important to develop methods that are easy to parameterize in a way that is robust to the different characteristics of the data at hand. This article presents a new method based on Self-Organizing Map (SOM) for clustering and classification, called Adaptive Local Thresholds Semi-Supervised Self-Organizing Map (ALTSS-SOM). It can dynamically switch between two forms of learning at training time, according to the availability of labels, as in previous models, and can automatically adjust itself to the local variance observed in each data cluster. The results show that the ALTSS-SOM surpass the performance of other semi-supervised methods in terms of classification, and other pure clustering methods when there are no labels available, being also less sensitive than previous methods to the parameters values

    A Semi-Supervised Self-Organizing Map for Clustering and Classification

    Full text link
    There has been an increasing interest in semi-supervised learning in the recent years because of the great number of datasets with a large number of unlabeled data but only a few labeled samples. Semi-supervised learning algorithms can work with both types of data, combining them to obtain better performance for both clustering and classification. Also, these datasets commonly have a high number of dimensions. This article presents a new semi-supervised method based on self-organizing maps (SOMs) for clustering and classification, called Semi-Supervised Self-Organizing Map (SS-SOM). The method can dynamically switch between supervised and unsupervised learning during the training according to the availability of the class labels for each pattern. Our results show that the SS-SOM outperforms other semi-supervised methods in conditions in which there is a low amount of labeled samples, also achieving good results when all samples are labeled

    MOEA/D with Uniformly Randomly Adaptive Weights

    Full text link
    When working with decomposition-based algorithms, an appropriate set of weights might improve quality of the final solution. A set of uniformly distributed weights usually leads to well-distributed solutions on a Pareto front. However, there are two main difficulties with this approach. Firstly, it may fail depending on the problem geometry. Secondly, the population size becomes not flexible as the number of objectives increases. In this paper, we propose the MOEA/D with Uniformly Randomly Adaptive Weights (MOEA/DURAW) which uses the Uniformly Randomly method as an approach to subproblems generation, allowing a flexible population size even when working with many objective problems. During the evolutionary process, MOEA/D-URAW adds and removes subproblems as a function of the sparsity level of the population. Moreover, instead of requiring assumptions about the Pareto front shape, our method adapts its weights to the shape of the problem during the evolutionary process. Experimental results using WFG41-48 problem classes, with different Pareto front shapes, shows that the present method presents better or equal results in 77.5% of the problems evaluated from 2 to 6 objectives when compared with state-of-the-art methods in the literature
    corecore