7 research outputs found

    Evaluating the Efficacies of Carbapenem/ÎČ-Lactamase Inhibitors Against Carbapenem-Resistant Gram-Negative Bacteria in vitro and in vivo

    Get PDF
    BackgroundCarbapenem-resistant Gram-negative bacteria are a major clinical concern as they cause virtually untreatable infections since carbapenems are among the last-resort antimicrobial agents. ÎČ-Lactamases implicated in carbapenem resistance include KPC, NDM, and OXA-type carbapenemases. Antimicrobial combination therapy is the current treatment approach against carbapenem resistance in order to limit the excessive use of colistin; however, its advantages over monotherapy remain debatable. An alternative treatment strategy would be the use of carbapenem/ÎČ-lactamase inhibitor (ÎČLI) combinations. In this study, we assessed the in vitro and in vivo phenotypic and molecular efficacies of three ÎČLIs when combined with different carbapenems against carbapenem-resistant Gram-negative clinical isolates. The chosen ÎČLIs were (1) Avibactam, against OXA-type carbapenemases, (2) calcium-EDTA, against NDM-1, and (3) Relebactam, against KPC-2.MethodsSix Acinetobacter baumannii clinical isolates were screened for blaOXA-23-like, blaOXA-24/40, blaOXA-51-like, blaOXA-58, and blaOXA-143-like, and eight Enterobacteriaceae clinical isolates were screened for blaOXA-48, blaNDM-1, and blaKPC-2. The minimal inhibitory concentrations of Imipenem (IPM), Ertapenem (ETP), and Meropenem (MEM) with corresponding ÎČLIs for each isolate were determined. The efficacy of the most suitable in vitro treatment option against each of blaOXA-48, blaNDM-1, and blaKPC-2 was assessed via survival studies in a BALB/c murine infection model. Finally, RT-qPCR was performed to assess the molecular response of the genes of resistance to the carbapenem/ÎČLI combinations used under both in vitro and in vivo settings.ResultsCombining MEM, IPM, and ETP with the corresponding ÎČLIs restored the isolates’ susceptibilities to those antimicrobial agents in 66.7%, 57.1%, and 30.8% of the samples, respectively. Survival studies in mice revealed 100% survival rates when MEM was combined with either Avibactam or Relebactam against blaOXA-48 and blaKPC-2, respectively. RT-qPCR demonstrated the consistent overexpression of blaOXA-48 upon treatment, without hindering Avibactam’s activity, while blaNDM-1 and blaKPC-2 experienced variable expression levels upon treatment under in vitro and in vivo settings despite their effective phenotypic results.ConclusionNew carbapenem/ÎČLI combinations may be viable alternatives to antimicrobial combination therapy as they displayed high efficacy in vitro and in vivo. Meropenem/Avibactam and Meropenem/Relebactam should be tested on larger sample sizes with different carbapenemases before progressing further in its preclinical development

    Molecular Characteristics of Colistin Resistance in <i>Acinetobacter baumannii</i> and the Activity of Antimicrobial Combination Therapy in a Tertiary Care Medical Center in Lebanon

    No full text
    (1) Background: Infections with pan-drug-resistant (PDR) bacteria, such as A. baumannii, are becoming increasingly common, especially in healthcare facilities. In this study, we selected 15 colistin-resistant clinical A. baumannii isolates from a hospital in Beirut, Lebanon, to test combination therapies and determine their sequence types (STs) and the mechanism of colistin resistance using whole-genome sequencing (WGS). (2) Methods: Antimicrobial susceptibility testing via broth microdilution against 12 antimicrobials from different classes and growth rate assays were performed. A checkerboard assay was conducted on PDR isolates using six different antimicrobials, each in combination with colistin. Genomic DNA was extracted from all isolates and subjected to WGS. (3) Results: All isolates were resistant to all tested antimicrobials with the one exception that was susceptible to gentamicin. Combining colistin with either meropenem, ceftolozane–tazobactam, or teicoplanin showed synergistic activity. Sequencing data revealed that 67% of the isolates belonged to Pasteur ST2 and 33% to ST187. Furthermore, these isolates harbored a number of resistance genes, including blaOXA-23. Mutations in the pmrC gene were behind colistin resistance. (4) Conclusions: With the rise in antimicrobial resistance and the absence of novel antimicrobial production, alternative treatments must be found. The combination therapy results from this study suggest treatment options for PDR ST2 A. baumannii-infected patients
    corecore