260 research outputs found
Rydberg excitation of a Bose-Einstein condensate
We have performed two-photon excitation via the 6P3/2 state to n=50-80 S or D
Rydberg state in Bose-Einstein condensates of rubidium atoms. The Rydberg
excitation was performed in a quartz cell, where electric fields generated by
plates external to the cell created electric charges on the cell walls.
Avoiding accumulation of the charges and realizing good control over the
applied electric field was obtained when the fields were applied only for a
short time, typically a few microseconds. Rydberg excitations of the
Bose-Einstein condensates loaded into quasi one-dimensional traps and in
optical lattices have been investigated. The results for condensates expanded
to different sizes in the one-dimensional trap agree well with the intuitive
picture of a chain of Rydberg excitations controlled by the dipole-dipole
interaction. The optical lattice applied along the one-dimensional geometry
produces localized, collective Rydberg excitations controlled by the
nearest-neighbour blockade.Comment: 7 pages, 7 figures, Laser Physics in press. arXiv admin note: text
overlap with arXiv:1103.423
Ion detection in the photoionization of a Rb Bose-Einstein condensate
Two-photon ionization of Rubidium atoms in a magneto-optical trap and a
Bose-Einstein condensate (BEC) is experimentally investigated. Using 100 ns
laser pulses, we detect single ions photoionized from the condenstate with a
35(10)% efficiency. The measurements are performed using a quartz cell with
external electrodes, allowing large optical access for BECs and optical
lattices.Comment: 14 pages, 7 figure
Rubidium Rydberg macrodimers
We explore long-range interactions between two atoms excited into high
principal quantum number n Rydberg states, and present calculated potential
energy surfaces (PES) for various symmetries of doubly excited ns and np
rubidium atoms. We show that the PES for these symmetries exhibit deep (~GHz)
potential wells, which can support very extended (~micrometers) bound
vibrational states (macrodimers). We present n-scaling relations for both the
depth De of the wells and the equilibrium separations Re of these macrodimers,
and explore their response to small electric fields and stability with respect
to predissociation. Finally, we present a scheme to form and study these
macrodimers via photoassociation, and show how one can probe the various
\ell-character of the potential wells
Spatially-selective in situ magnetometry of ultracold atomic clouds
We demonstrate novel implementations of high-precision optical magnetometers which allow for spatially-selective and spatially-resolved in situ measurements using cold atomic clouds. These are realised by using shaped dispersive probe beams combined with spatially-resolved balanced homodyne detection. Two magnetometer sequences are discussed: a vectorial magnetometer, which yields sensitivities two orders of magnitude better compared to a previous realisation and a Larmor magnetometer capable of measuring absolute magnetic fields. We characterise the dependence of single-shot precision on the size of the analysed region for the vectorial magnetometer and provide a lower bound for the measurement precision of magnetic field gradients for the Larmor magnetometer. Finally, we give an outlook on how dynamic trapping potentials combined with selective probing can be used to realise enhanced quantum simulations in quantum gas microscopes
The affinity purification and characterization of ATP synthase complexes from mitochondria.
The mitochondrial Fâ-ATPase inhibitor protein, IFâ, inhibits the hydrolytic, but not the synthetic activity of the F-ATP synthase, and requires the hydrolysis of ATP to form the inhibited complex. In this complex, the α-helical inhibitory region of the bound IFâ occupies a deep cleft in one of the three catalytic interfaces of the enzyme. Its N-terminal region penetrates into the central aqueous cavity of the enzyme and interacts with the Îł-subunit in the enzyme's rotor. The intricacy of forming this complex and the binding mode of the inhibitor endow IFâ with high specificity. This property has been exploited in the development of a highly selective affinity procedure for purifying the intact F-ATP synthase complex from mitochondria in a single chromatographic step by using inhibitor proteins with a C-terminal affinity tag. The inhibited complex was recovered with residues 1-60 of bovine IFâ with a C-terminal green fluorescent protein followed by a His-tag, and the active enzyme with the same inhibitor with a C-terminal glutathione-S-transferase domain. The wide applicability of the procedure has been demonstrated by purifying the enzyme complex from bovine, ovine, porcine and yeast mitochondria. The subunit compositions of these complexes have been characterized. The catalytic properties of the bovine enzyme have been studied in detail. Its hydrolytic activity is sensitive to inhibition by oligomycin, and the enzyme is capable of synthesizing ATP in vesicles in which the proton-motive force is generated from light by bacteriorhodopsin. The coupled enzyme has been compared by limited trypsinolysis with uncoupled enzyme prepared by affinity chromatography. In the uncoupled enzyme, subunits of the enzyme's stator are degraded more rapidly than in the coupled enzyme, indicating that uncoupling involves significant structural changes in the stator region
Recommended from our members
The structure of Fâ-ATPase from Saccharomyces cerevisiae inhibited by its regulatory protein IFâ.
The structure of Fâ-ATPase from Saccharomyces cerevisiae inhibited by the yeast IFâ has been determined at 2.5 Ă
resolution. The inhibitory region of IFâ from residues 1 to 36 is entrapped between the C-terminal domains of the α(DP)- and ÎČ(DP)-subunits in one of the three catalytic interfaces of the enzyme. Although the structure of the inhibited complex is similar to that of the bovine-inhibited complex, there are significant differences between the structures of the inhibitors and their detailed interactions with Fâ-ATPase. However, the most significant difference is in the nucleotide occupancy of the catalytic ÎČ(E)-subunits. The nucleotide binding site in ÎČ(E)-subunit in the yeast complex contains an ADP molecule without an accompanying magnesium ion, whereas it is unoccupied in the bovine complex. Thus, the structure provides further evidence of sequential product release, with the phosphate and the magnesium ion released before the ADP molecule.Support for this work was provided by the Medical Research Council, UK, including a PhD studentship (to G.C.R.) and a Career Training Fellowship (to J.V.B.), by the European Drug Initiative in Channels and Transporters (EDICT; to J.E.W.), and by a grant from NIH no. R01GM66223 to D.M.M
Androgen metabolism and inhibition of interleukin-1 synthesis in primary cultured human synovial macrophages
The presence of androgen receptors on synovial macrophages in human normal and rheumatoid synovial tissues has been described previously. It is now reported that primary cultured human macrophages obtained from normal and rheumatoid synovia express functional androgen receptors. We have investigated the capacity of cultured macrophages to metabolize androgens and have found that these cells were capable of metabolizing testosterone to the bioactive metabolite dihydrotestosterone. Therefore, macrophages contain the key enzymes of steroidogenesis, in particular the 5α-treductase. Furthermore, interleukin-1ÎČ production by primary cultured rheumatoid macrophages was analysed, following exposure to physiological concentrations of testosterone (10â8 M). A significant decrease of IL-1ÎČ levels in conditioned media after 24 h (p < 0.05) was observed. It is concluded that androgens may act directly on human macrophages and may interfere with some of their functions via receptor-dependent mechanisms
The purification and characterization of ATP synthase complexes from the mitochondria of four fungal species.
The ATP synthases have been isolated by affinity chromatography from the mitochondria of the fungal species Yarrowia lipolytica, Pichia pastoris, Pichia angusta and Saccharomyces cerevisiae. The subunit compositions of the purified enzyme complexes depended on the detergent used to solubilize and purify the complex, and the presence or absence of exogenous phospholipids. All four enzymes purified in the presence of n-dodecyl-ÎČ-D-maltoside had a complete complement of core subunits involved directly in the synthesis of ATP, but they were deficient to different extents in their supernumerary membrane subunits. In contrast, the enzymes from P. angusta and S. cerevisiae purified in the presence of n-decyl-ÎČ-maltose neopentyl glycol and the phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, cardiolipin (diphosphatidylglycerol) and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] had a complete complement of core subunits and also contained all of the known supernumerary membrane subunits, e, f, g, j, k and ATP8 (or Aap1), plus an additional new membrane component named subunit l, related in sequence to subunit k. The catalytic domain of the enzyme from P. angusta was more resistant to thermal denaturation than the enzyme from S. cerevisiae, but less stable than the catalytic domain of the bovine enzyme, but the stator and the integrity of the transmembrane proton pathway were most stable in the enzyme from P. angusta. The P. angusta enzyme provides a suitable source of enzyme for studying the structure of the membrane domain and properties associated with that sector of the enzyme complex.This work was funded by the intramural programme of the Medical Research Council (MRC). T.J.C was the recipient of an MRC graduate studentship
- âŠ