41 research outputs found

    Temporal analysis of the autophagic and apoptotic phenotypes in Leishmania parasites

    Get PDF
    The leishmaniases are worldwide neglected tropical diseases caused by parasitic protozoa of the Leishmania genus. Different stimuli induce Leishmania cell death, but the proteins involved remain poorly understood. Furthermore, confusion often appears between cell death and the cell survival process autophagy, whose phenotype is not clearly defined. In this article, we present a comprehensive and temporal analysis of the cellular events occurring during miltefosine-induced cell death and autophagy in L. major. We also provide a list of features in order to clearly identify apoptotic cells, autophagic cells and to distinguish both processes. Furthermore, we demonstrate that autophagy is followed by apoptosis in the absence of nutrients. Finally, we show that cells treated with the generic kinase inhibitor staurosporine express apoptotic as well as autophagic markers and therefore cannot be used as an apoptosis inducer in Leishmania. These descriptions lead to a better recognition and understanding of apoptosis and autophagy, enabling their targeting in the development of new anti-leishmanial drugs. These researches also make it possible to better understand these processes in general, through the study of an ancestral eukaryote

    Nongenotoxic 3-Nitroimidazo[1,2-a]pyridines Are NTR1 Substrates That Display Potent in Vitro Antileishmanial Activity

    Get PDF
    Twenty nine original 3-nitroimidazo[1,2-a]pyridine derivatives, bearing a phenylthio (or benzylthio) moiety at position 8 of the scaffold, were synthesized. In vitro evaluation highlighted compound 5 as an antiparasitic hit molecule displaying low cytotoxicity for the human HepG2 cell line (CC50 > 100 mu M) alongside good antileishmanial activities (IC50 = 1-2.1 mu M) against L. donovani, L. infantum, and L. major; and good antitrypanosomal activities (IC50 = 1.3-2.2 mu M) against T. brucei brucei and T. cruzi, in comparison to several reference drugs such as miltefosine, fexinidazole, eflornithine, and benznidazole (IC50 = 0.6 to 13.3 mu M). Molecule 5, presenting a low reduction potential (E degrees = -0.63 V), was shown to be selectively bioactivated by the L. donovani type 1 nitroreductase (NTR1). Importantly, molecule 5 was neither mutagenic (negative Ames test), nor genotoxic (negative comet assay), in contrast to many other nitroaromatics. Molecule 5 showed poor microsomal stability; however, its main metabolite (sulfoxide) remained both active and nonmutagenic, making 5 a good candidate for further in vivo studies

    Apoptosis and autophagy in Leishmania major

    Full text link
    Leishmania est un protozoaire parasite de l’ordre de Kinétoplastida de la famille des Trypanosomatidés, agent pathogène des leishmanioses. Au cours de cette thèse nous nous sommes intéressés à l’apoptose chez L. major. Bien que ce processus soit phénotypiquement identique à l’apoptose des mammifères, les protéines clés et les voies métaboliques impliquées restent largement inconnues. L’autophagie étant paradoxalement étroitement liée à l’apoptose, nous nous sommes également intéressés à ce processus de survie cellulaire. La première partie de ce travail a permis de décrire le phénotype autophagique et de montrer qu’apoptose et autophagie sont deux processus distincts mais également en lien étroit. Dans la deuxième partie, nous nous sommes focalisés sur la métacaspase de L. major LmjMCA. Nous avons observé un rôle de LmjMCA similaire à celui des caspases humaines au cours de l’apoptose, en lien avec son domaine catalytique. Nous avons montré que la surexpression de LmjMCA induit l’entrée en autophagie des cellules. Enfin, la troisième partie de ce travail s’est concentrée sur l’étude du cytosquelette. Nous avons ainsi pu établir un lien entre (dé)glutamylation, apoptose et autophagie. Nous avons mis en évidence que la polyglutamylation du cytosquelette, entraîne l’entrée en apoptose des cellules tandis que la déglutamylation du cytosquelette est associée au processus de survie cellulaire. Ce travail a permis de mieux caractériser les processus d’autophagie et d’apoptose chez Leishmania. Ces résultats permettent d’ouvrir des perspectives dans le développement de nouveaux outils thérapeutiques.Leishmania is a protozoan parasite of the Kinetoplastida order and the Trypansomatid family and is the causative agent of leishmaniasis. In this thesis we focused on apoptosis in L. major. Although this process is phenotypically similar to mammal apoptosis, key proteins and metabolic pathways involved remain largely unknown. Autophagy being paradoxically closely linked to apoptosis, we were also interested in this cell survival process and its relationship with programmed cell death. The first part of this thesis has described the phenotypical changes during autophagy and shown that apoptosis and autophagy are two separate processes, but there is also a close relationship between these two mechanisms. In the second part of this thesis, we have demonstrated that LmjMCA has a role similar to the one of human caspases during apoptosis, through its catalytic domain. In addition, we have shown that LmjMCA overexpression induces autophagy entry after nutrient deprivation via its C-terminal domain.The third part of this work has focused on the study of the cytoskeleton. We could establish a link between (de)glutamylation, apoptosis and autophagy. Indeed, we have shown that cytoskeleton polyglutamylation induces cell death while cytoskeleton deglutamylation is associated with the cell survival process autophagy. This thesis allowed us to better characterize the autophagy and apoptosis processes in Leishmania and to identify the metacaspase as involved in the corresponding pathways. These results open perspectives in the development of new therapeutic tools

    La mort cellulaire chez Leishmania

    Get PDF
    International audienceLeishmaniases still represent a global scourge and new therapeutic tools are necessary to replace the current expensive, difficult to administer treatments that induce numerous adverse effects and for which resistance is increasingly worrying. In this context, the particularly original organization of the Leishmania parasite in comparison to higher eukaryotes is a great advantage. It allows for the development of new, very specific, and thus non-cytotoxic treatments. Among these originalities, Leishmania cell death can be cited. Despite a classic pattern of apoptosis, key mammalian apoptotic proteins are not present in Leishmania, such as caspases, cell death receptors, and anti-apoptotic molecules. Recent studies have helped to develop a better understanding of parasite cell death, identifying new proteins or even new apoptotic pathways. This review provides an overview of the current knowledge on Leishmania cell death, describing its physiological roles and its phenotype, and discusses the involvement of various proteins: endonuclease G, metacaspase, aquaporin Li-BH3AQP, calpains, cysteine proteinase C, LmjHYD36 and Lmj.22.0600. From these data, potential apoptotic pathways are suggested. This review also offers tools to identify new Leishmania cell death effectors. Lastly, different approaches to use this knowledge for the development of new therapeutic tools are suggested: either inhibition of Leishmania cell death or activation of cell death for instance by treating cells with proteins or peptides involved in parasite death fused to a cell permeant peptide or encapsulated into a lipidic vector to target intra-macrophagic Leishmania cells.Alors que les leishmanioses représentent toujours un fléau mondial, de nouveaux outils thérapeutiques sont nécessaires pour remplacer les traitements actuels qui sont chers, difficiles à administrer, qui induisent de nombreux effets secondaires et pour lesquels la résistance est de plus en plus inquiétante. Pour cela, l’organisation très originale du parasite Leishmania par rapport aux eucaryotes supérieurs est un grand avantage. En effet, cela permet le développement de nouveaux traitements très spécifiques et donc non cytotoxiques. Parmi ces originalités, la mort cellulaire de Leishmania peut être citée. Malgré un aspect classique d’apoptose, les protéines apoptotiques clefs des mammifères ne sont pas présentes chez Leishmania, telles que les caspases, les récepteurs de mort et les molécules anti-apoptotiques. Des études récentes ont participé à une meilleure compréhension de la mort cellulaire du parasite, identifiant de nouvelles protéines ou même de nouvelles voies apoptotiques. Cette revue fait le point sur l’état actuel des connaissances sur la mort cellulaire de Leishmania, décrivant ses rôles physiologiques et son phénotype et discutant l’implication de différentes protéines : endonucléase G, métacaspase, aquaporine Li-BH3AQP, calpaïnes, cystéine protéinase C, LmjHYD36 et Lmj.22.0600. À partir de ces données, différentes voies apoptotiques potentielles sont suggérées. Cette revue fournit également des outils pour identifier de nouveaux effecteurs de la mort cellulaire de Leishmania. Pour finir, différentes approches pour utiliser ces connaissances pour le développement de nouveaux outils thérapeutiques sont suggérées : soit inhibition de la mort cellulaire de Leishmania, soit activation de celle-ci par exemple en traitant les cellules avec des protéines/peptides impliqués dans la mort du parasite fusionnés à un peptide pénétrant dans les cellules ou encapsulés dans un vecteur lipidique pour cibler les cellules de Leishmania intra-macrophagiques

    Different apoptosis pathways in Leishmania parasites

    Full text link
    International audienc

    Calcein+/PI- as an early apoptotic feature in Leishmania.

    Full text link
    Although leishmaniases are responsible for high morbidity and mortality all over the world, no really satisfying treatment exists. Furthermore, the corresponding parasite Leishmania undergoes a very characteristic form of programmed cell death. Indeed, different stimuli can induce morphological and biochemical apoptotic-like features. However, the key proteins involved in mammal apoptosis, such as caspases and death receptors, are not encoded in the genome of this parasite. Currently, little is known about Leishmania apoptosis, notably owing to the lack of specific tools for programmed cell death analysis in these parasites. Furthermore, there is a need for a better understanding of Leishmania programmed cell death in order (i) to better understand the role of apoptosis in unicellular organisms, (ii) to better understand apoptosis in general through the study of an ancestral eukaryote, and (iii) to identify new therapeutic targets against leishmaniases. To advance understanding of apoptosis in Leishmania, in this study we developed a new tool based on the quantification of calcein and propidium iodide by flow cytometry. This double labeling can be employed to distinguish early apoptosis, late apoptosis and necrosis in Leishmania live cells with a very simple and rapid assay. This paper should, therefore, be of interest for people working on Leishmania and related parasites

    A potential acetyltransferase involved in Leishmania major metacaspase-dependent cell death

    Full text link
    International audienceCurrently, there is no satisfactory treatment for leishmaniases, owing to the cost, mode of administration, side effects and to the increasing emergence of drug resistance. As a consequence, the proteins involved in Leishmania apoptosis seem a target of choice for the development of new therapeutic tools against these neglected tropical diseases. Indeed, Leishmania cell death, while phenotypically similar to mammalian apoptosis, is very peculiar, involving no homologue of the key mammalian apoptotic proteins such as caspases and death receptors. Furthermore, very few proteins involved in Leishmania apoptosis have been identified

    (De)glutamylation and cell death in Leishmania parasites

    Get PDF
    International audienceTrypanosomatids are flagellated protozoan parasites that are very unusual in terms of cyto-skeleton organization but also in terms of cell death. Most of the Trypanosomatid cytoskele-ton consists of microtubules, forming different substructures including a subpellicular corset. Oddly, the actin network appears structurally and functionally different from other eukaryotic actins. And Trypanosomatids have an apoptotic phenotype under cell death conditions, but the pathways involved are devoid of key mammal proteins such as caspases or death receptors, and the triggers involved in apoptotic induction remain unknown. In this article, we have studied the role of the post-translational modifications, deglutamylation and poly-glutamylation, in Leishmania. We have shown that Leishmania apoptosis was linked to poly-glutamylation and hypothesized that the cell survival process autophagy was linked to deglutamylation. A balance seems to be established between polyglutamylation and deglu-tamylation, with imbalance inducing microtubule or other protein modifications characterizing either cell death if polyglutamylation was prioritized, or the cell survival process of autophagy if deglutamylation was prioritized. This emphasizes the role of post-translational modifications in cell biology, inducing cell death or cell survival of infectious agents

    A novel hydrolase with a pro-death activity from the protozoan parasite Leishmania major

    Full text link
    International audienceApoptosis is a cell death process generally described as involving a cascade of caspase activation, death receptors and/or pro- and antiapoptotic molecules from the BcL-2 family. But about 20 years ago, a caspase-independent apoptotic pathway has been described. Regarding this pathway, we can learn a lot from Leishmania parasites. Indeed, these parasitic protozoa enter, in response to different stimuli, in a form of cell death phenotypically similar to mammalian apoptosis but without involving caspases or death receptors. So far, only two proteins have been clearly identified as being involved in Leishmania-regulated cell death: the metacaspase and the endonuclease G. We report here the identification of a new protein modeled as a potential hydrolase, highly conserved among Leishmania species and absent in the very close parasite Trypanosoma brucei. This protein is involved in L. major-regulated cell death induced by curcumin, miltefosine and pentamidine, after gene overexpression and/or protein translocation to the nucleus. The identification of proteins involved in Leishmania-regulated cell death will provide a better understanding of nonconventional apoptotic pathways in higher eukaryotes. It will also allow the development of new therapeutic tools via the identification of new specific targets

    Tight Junctions as a Key for Pathogens Invasion in Intestinal Epithelial Cells

    Full text link
    Tight junctions play a major role in maintaining the integrity and impermeability of the intestinal barrier. As such, they act as an ideal target for pathogens to promote their translocation through the intestinal mucosa and invade their host. Different strategies are used by pathogens, aimed at directly destabilizing the junctional network or modulating the different signaling pathways involved in the modulation of these junctions. After a brief presentation of the organization and modulation of tight junctions, we provide the state of the art of the molecular mechanisms leading to permeability breakdown of the gut barrier as a consequence of tight junctions’ attack by pathogens, including bacteria, viruses, fungi, and parasites
    corecore