15 research outputs found

    Replication timing maintains the global epigenetic state in human cells

    Get PDF
    ACKNOWLEDGMENTS We thank R. Didier and B. Alexander of the FSU Flow Cytometry and Confocal Microscopy Facilities for their help with flow cytometry and fluorescence-activated cell sorting for this project. Thanks to A. Brown of the FSU Biological Science Core Labs and to Y. Yang and C. Vied of the FSU Translational Labs. Thanks to S. R. Westermann of SCIGRAPHIX for generating the model figure. Thanks to B. van Steensel, J. Phillips-Cremins, and P. Fraser for critical reading of the manuscript. Funding: This work was supported by NIH grant GM083337 to D.M.G., GM035463 to V.G.C., and GM085354 to D.M.G., S.D., and V.G.C. D.L. is supported by the Hong Kong Research Grant Council (ECS 26104216). T.B. is supported by the William C. and Joyce C. Oā€™Neil Charitable Trust, Memorial Sloan Kettering Single Cell Sequencing InitiativePeer reviewedPostprin

    Interactive analysis and quality assessment of single-cell copy-number variations

    Get PDF
    Single-cell sequencing is emerging as a critical technology for understanding the biology of cancer, neurons, and other complex systems. Here we introduce Ginkgo, a web platform for the interactive analysis and quality assessment of single-cell copy-number alterations. Ginkgo fully automates the process of binning, normalizing, and segmenting mapped reads to infer copy number profiles of individual cells, as well as constructing phylogenetic trees of how those cells are related. We validate Ginkgo by reproducing the results of five major single-cell studies, and discuss how it addresses the wide array of biases that affect single-cell analysis. We also examine the data characteristics of three commonly used single-cell amplification techniques: MDA, MALBAC, and DOP-PCR/WGA4 through comparative analysis of 9 different single-cell datasets. We conclude that DOP-PCR provides the most uniform amplification, while MDA introduces substantial biases into the analysis. Furthermore, given the same level of coverage, our results indicate that data prepared using DOP-PCR can reliably call CNVs at higher resolution than data prepared using either MALBAC or MDA. Ginkgo is freely available at http://qb.cshl.edu/ginkgo.Received November 11, 2014.Accepted November 12, 2014.Ā© 2014, Published by Cold Spring Harbor Laboratory PressThis pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0

    Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer.

    Full text link
    Colorectal cancer (CRC) is a leading cause of death in the developed world, yet facile preclinical models that mimic the natural stages of CRC progression are lacking. Through the orthotopic engraftment of colon organoids we describe a broadly usable immunocompetent CRC model that recapitulates the entire adenoma-adenocarcinoma-metastasis axis in vivo. The engraftment procedure takes less than 5 minutes, shows efficient tumor engraftment in two-thirds of mice, and can be achieved using organoids derived from genetically engineered mouse models (GEMMs), wild-type organoids engineered ex vivo, or from patient-derived human CRC organoids. In this model, we describe the genotype and time-dependent progression of CRCs from adenocarcinoma (6 weeks), to local disseminated disease (11-12 weeks), and spontaneous metastasis (>20 weeks). Further, we use the system to show that loss of dysregulated Wnt signaling is critical for the progression of disseminated CRCs. Thus, our approach provides a fast and flexible means to produce tailored CRC mouse models for genetic studies and pre-clinical investigation

    Deletions linked to TP53 loss drive cancer through p53-independent mechanisms

    Full text link
    Mutations disabling the TP53 tumour suppressor gene represent the most frequent events in human cancer and typically occur through a two-hit mechanism involving a missense mutation in one allele and a 'loss of heterozygosity' deletion encompassing the other. While TP53 missense mutations can also contribute gain-of-function activities that impact tumour progression, it remains unclear whether the deletion event, which frequently includes many genes, impacts tumorigenesis beyond TP53 loss alone. Here we show that somatic heterozygous deletion of mouse chromosome 11B3, a 4-megabase region syntenic to human 17p13.1, produces a greater effect on lymphoma and leukaemia development than Trp53 deletion. Mechanistically, the effect of 11B3 loss on tumorigenesis involves co-deleted genes such as Eif5a and Alox15b (also known as Alox8), the suppression of which cooperates with Trp53 loss to produce more aggressive disease. Our results imply that the selective advantage produced by human chromosome 17p deletion reflects the combined impact of TP53 loss and the reduced dosage of linked tumour suppressor genes

    Whole-genome single-cell copy number profiling from formalin-fixed paraffin-embedded samples

    Full text link
    A substantial proportion of tumors consist of genotypically distinct subpopulations of cancer cells. This intratumor genetic heterogeneity poses a substantial challenge for the implementation of precision medicine. Single-cell genomics constitutes a powerful approach to resolve complex mixtures of cancer cells by tracing cell lineages and discovering cryptic genetic variations that would otherwise be obscured in tumor bulk analyses. Because of the chemical alterations that result from formalin fixation, single-cell genomic approaches have largely remained limited to fresh or rapidly frozen specimens. Here we describe the development and validation of a robust and accurate methodology to perform whole-genome copy-number profiling of single nuclei obtained from formalin-fixed paraffin-embedded clinical tumor samples. We applied the single-cell sequencing approach described here to study the progression from in situ to invasive breast cancer, which revealed that ductal carcinomas in situ show intratumor genetic heterogeneity at diagnosis and that these lesions may progress to invasive breast cancer through a variety of evolutionary processes
    corecore