1,639 research outputs found

    Theory of one-dimensional double-barrier quantum pump in two-frequency signal regime

    Full text link
    A one-dimensional system with two δ\delta-like barriers or wells bi-chromaticaly oscillating at frequencies ω\omega and 2ω2\omega is considered. The alternating signal leads to the direct current across the structure (even in a symmetric system). The properties of this quantum pump are studied in a wide range of the system parameters.Comment: 4 pages, 5 figure

    Conductivity of 2D many-component electron gas, partially-quantized by magnetic field

    Full text link
    The 2D semimetal consisting of heavy holes and light electrons is studied. The consideration is based on assumption that electrons are quantized by magnetic field while holes remain classical. We assume also that the interaction between components is weak and the conversion between components is absent. The kinetic equation for holes colliding with quantized electrons is utilized. It has been stated that the inter-component friction and corresponding correction to the dissipative conductivity σxx\sigma_{xx} {\it do not vanish at zero temperature} due to degeneracy of the Landau levels. This correction arises when the Fermi level crosses the Landau level. The limits of kinetic equation applicability were found. We also study the situation of kinetic memory when particles repeatedly return to the points of their meeting.Comment: 13 pages, 1 figur

    Properties of 1D two-barrier quantum pump with harmonically oscillating barriers

    Full text link
    We study a one-dimensional quantum pump composed of two oscillating delta-functional barriers. The linear and non-linear regimes are considered. The harmonic signal applied to any or both barriers causes the stationary current. The direction and value of the current depend on the frequency, distance between barriers, value of stationary and oscillating parts of barrier potential and the phase shift between alternating voltages.Comment: 7 pages, 8 figure

    Photocurrent in nanostructures with asymmetric antidots

    Full text link
    The steady current induced by electromagnetic field in a 2D system with asymmetric scatterers is studied. The scatterers are assumed to be oriented cuts with one diffusive and another specular sides. Besides, the existence of isotropic impurity scatterers is assumed. This simple model simulates the lattice of half-disk which have been studied numerically recently. The model allows the exact solution in the framework of the kinetic equation. The static current response in the second order of electric field is obtained. The photogalvanic tensor contains both responses to linear and circular polarization of electromagnetic field. The model possesses non-analyticity with regards to the rate of impurity scattering.Comment: 9 pages, 6 figure

    On the effect of far impurities on the density of states of two-dimensional electron gas in a strong magnetic field

    Full text link
    The effect of impurities situated at different distances from a two-dimensional electron gas on the density of states in a strong magnetic field is analyzed. Based on the exact result of Brezin, Gross, and Itzykson, we calculate the density of states in the whole energy range, assuming the Poisson distribution of impurities in the bulk. It is shown that in the case of small impurity concentration the density of states is qualitatively different from the model case when all impurities are located in the plane of the two-dimensional electron gas.Comment: 6 pages, 1 figure, submitted to JETP Letter

    Non-Markovian spin relaxation in two-dimensional electron gas

    Full text link
    We analyze by Monte-Carlo simulations and analytically spin dynamics of two-dimensional electron gas (2DEG) interacting with short-range scatterers in nonquantizing magnetic fields. It is shown that the spin dynamics is non-Markovian with the exponential spin relaxation followed by the oscillating tail due to the electrons residing on the closed trajectories. The tail relaxes on a long time scale due to an additional smooth random potential and inelastic processes. The developed analytical theory and Monte-Carlo simulations are in the quantitative agreement with each other.Comment: 6 pages, 3 figure

    Density of States and Conductivity of Granular Metal or Array of Quantum Dots

    Full text link
    The conductivity of a granular metal or an array of quantum dots usually has the temperature dependence associated with variable range hopping within the soft Coulomb gap of density of states. This is difficult to explain because neutral dots have a hard charging gap at the Fermi level. We show that uncontrolled or intentional doping of the insulator around dots by donors leads to random charging of dots and finite bare density of states at the Fermi level. Then Coulomb interactions between electrons of distant dots results in the a soft Coulomb gap. We show that in a sparse array of dots the bare density of states oscillates as a function of concentration of donors and causes periodic changes in the temperature dependence of conductivity. In a dense array of dots the bare density of states is totally smeared if there are several donors per dot in the insulator.Comment: 13 pages, 15 figures. Some misprints are fixed. Some figures are dropped. Some small changes are given to improve the organizatio

    Microwave photoresistance of a high-mobility two-dimensional electron gas in a triangular antidot lattice

    Full text link
    The microwave (MW) photoresistance has been measured on a high-mobility two-dimensional electron gas patterned with a shallow triangular antidot lattice, where both the MW-induced resistance oscillations (MIRO) and magnetoplasmon (MP) resonance are observed superposing on sharp commensurate geometrical resonance (GR). Analysis shows that the MIRO, MP, and GR are decoupled from each other in these experiments.Comment: 5 pages, 4 figures, paper accepted by PR
    • …
    corecore