23 research outputs found

    Enhancement of beta-catenin in cardiomyocytes suppresses survival protein expression but promotes apoptosis and fibrosis

    Get PDF
    Background: Beta-catenin has been implicated in cell-cell communication in a wide variety of developmental and physiological processes. Defective Wnt signaling could result in various cardiac and vascular abnormalities. Little is known regarding Wnt/frizzled pathway in cardiomyocyte apoptosis. Methods: In this study, the role of b-catenin in apoptosis was investigated in H9c2 cardiomyocytes and primary cardiomyocytes isolated in diabetic Wistar rats. The cardiomyocytes were transfected with porcine cytomegalovirus (pCMV)-b-catenin plasmid in order to overexpress b-catenin. Results: The transcription factor displayed a significant nuclear localization in Wistar rats with cardiac hypertension. Transfection of b-catenin plasmid induced apoptosis and reduced expression of survival pathway markers in cardiomyocytes in a dose-dependent manner. Furthermore, expression of fibrosis protein markers was upregulated by the overexpression. Conclusions: Taken together, these results revealed that altered Wnt/b-catenin signaling might provoke heart failure. (Cardiol J 2017; 24, 2: 195–205

    VH-4-A Bioactive Peptide from Soybean and Exercise Training Constrict Hypertension in Rats through Activating Cell Survival and AMPKα1, Sirt1, PGC1α, and FoX3α

    No full text
    Hypertension is a chronic disease related to age, which affects tens of millions of people around the world. It is an important risk factor that causes myocardial infarction, heart failure, stroke, and kidney damage. Bioactive peptide VHVV (VH-4) from soybean has shown several biological activities. Physical exercise is a cornerstone of non-pharmacologic treatment for hypertension and has established itself as an effective and complementary strategy for managing hypertension. The present study evaluates the efficacy of VH-4 supplement and swimming exercise training in preventing hypertension in spontaneously hypertensive rats (SHR). SHR animals were treated with VH-4 (25 mg/kg by intraperitoneal administration) and swimming exercise (1 h daily) for eight weeks, and the hemodynamic parameters, histology, and cell survival pathway protein expression were examined. In SHR rats, increased heart weight, blood pressure, and histological aberrations were observed. Cell survival protein p-PI3K and p-AKT and antiapoptosis proteins Bcl2 and Bcl-XL expression decreased in SHR animals. SIRT1 and FOXO3 were decreased in hypertensive rats. Both bioactive peptide VH-4 treatment and swimming exercise training in hypertensive rats increased the cell survival proteins p-PI3K and p-AKT and AMPKα1, Sirt1, PGC1α, and FoX3α proteins. Soy peptide VH-4, along with exercise, acts synergistically and prevents hypertension by activating cell survival and AMPKα1, Sirt1, PGC1α, and FoX3α proteins

    Neferine, a bisbenzylisoquinoline alkaloid, offers protection against cobalt chloride-mediated hypoxia-induced oxidative stress in muscle cells

    No full text
    Background: Neferine, a bisbenzylisoquinoline alkaloid, isolated from Nelumbo nucifera has a wide range of biological activities. Cobalt chloride (CoCl2) was known to mimic hypoxic condition. In the present study, we assessed the cytoprotective effect of neferine against CoCl2-induced oxidative stress in muscle cells. Methods: Rhabdomyosarcoma cells were exposed to different concentrations of CoCl2, and the IC50 value was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Lactate dehydrogenase and NO assays were performed in order to determine the cytotoxic effect of CoCl2. Reactive oxygen species generation and cellular antioxidant status were determined for evaluating oxidative stress. For analyzing the effect of neferine on CoCl2-induced apoptosis, propidium iodide staining was performed. Results: The results of the present study indicate that CoCl2 induces cell death in a dose-dependent manner. Neferine pretreatment at 700 nM concentration offers better cytoprotection in the cells exposed to CoCl2. Lactate dehydrogenase and NO release in the culture medium were restored after neferine pretreatment. CoCl2 triggers time-dependent reactive oxygen species generation in muscle cells. Further, results of propidium iodide staining, mitochondrial membrane potential, and intracellular calcium accumulation confirm that neferine offers protection against CoCl2-induced hypoxic injury. Depleted activities of antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase due to CoCl2 exposure were also reinstated in the group that received neferine pretreatment. Conclusion: Our study suggests that neferine from N. nucifera offers protection to muscle cells by counteracting the oxidative stress induced by CoCl2

    Tinospora cordifolia extract prevents cadmium-induced oxidative stress and hepatotoxicity in experimental rats

    No full text
    Background: Cadmium (Cd) pollution is of serious concern due to its toxic effects in both humans and animals. The study investigates the protective effect of Tinospora cordifolia stem methanolic extract (TCME) on Cd induced hepatotoxicity. Objective(s): The objective of the study was to explore the hepatoprotective effects of T. cordifolia extract. Materials and methods: Rats were administered orally with Cd (5 mg/kg) and TCME (100 mg/kg) for 28 days. At the end of the treatment period, serum and liver tissues homogenates were subjected to biochemical analysis. Results: Cd treated rats showed increased activities of the serum marker enzymes of liver damage such as AST and ALT along with increased levels of LPO and protein carbonyl content in liver tissues. Cd treatment also leads to decreased activities of endogenous antioxidants (SOD, CAT, GSH, GPx and GST), membrane ATPases (Na+K+ATPase, Ca2+ATPase and Mg2+K+ATPase) and the tissue glycoprotein levels (hexose, fucose, hexosamine and sialic acid). Histological analysis revealed vacuolar degeneration of hepatocytes with focal necrosis upon Cd administration. TCME co-treatment restored the biochemical and histological alterations caused by Cd intoxication to near normal levels. Conclusion: The results of the present investigation reveal the hepatoprotective nature of T. cordifolia against Cd induced hepatotoxicity. Keywords: Cadmium, Oxidative stress, Tinospora cordifolia, Hepatotoxicity, Antioxidan

    Anti-Fatigue and Exercise Performance Improvement Effect of Glossogyne tenuifolia Extract in Mice

    No full text
    Glossogyne tenuifolia (GT) is a native perennial plant growing across the coastline areas in Taiwan. The current study aimed to examine the efficacy of GT extract in ameliorating physical fatigue during exercise and increasing exercise performance. Fifty male Institute of Cancer Research (ICR) mice were randomly segregated into five groups (n = 10) to GT extract orally for 4 weeks, at different concentrations (50, 100, 250, and 500 mg/kg BW/day): LGT 1X, MGT 2X, HGT 5X, and HGT 10X groups. Forelimb grip strength, endurance swimming time, serum biochemical marker levels, blood lipid profile and histological analysis of various organs were performed to assess the anti-fatigue effect and exercise performance of GT extract. The forelimb-grips strength and endurance-swimming time of GT-administered mice were increased significantly in a dose-dependent manner when compared to the control. Serum glucose, creatine kinase, and lactate levels were increased significantly in the HGT 10X group. Liver marker serum glutamic-oxaloacetic transaminase (GOT) was increased in the HGT 5X and HGT 10X groups, whereas Serum Glutamic Pyruvic Transaminase (GPT) was not altered. Renal markers, creatinine and uric acid levels, were not altered. Muscle and hepatic glycogen levels, which are essential for energy sources during exercise, were also significantly increased in a dose-dependent manner in all GT extract groups. No visible histological aberrations were observed in the vital organs after GT extract administration. The supplementation with GT extract could have beneficial effects on exercise performance and anti-fatigue function without toxicity at a higher dose

    Modulatory effect of Tinospora cordifolia extract on Cd-induced oxidative stress in Wistar rats

    Get PDF
    Background: Cadmium (Cd), a nonessential heavy metal, is a major environmental and public health concern. Oxidative stress plays an important role in Cd-induced kidney dysfunction. Tinospora cordifolia, a medicinal plant rich in phytochemicals, possesses antioxidant activity. The objective of the present study was to assess the protective effect of Tinospora cordifolia-stem methanolic extract (TCE) on Cd-induced nephrotoxicity in Wistar rats. Methods: Male Wistar rats were administered ∼5 mg/kg body weight Cd orally and 100 mg/kg body weight TCE for 28 days. At the end of Cd and TCE treatment, biochemical assays were performed in serum and tissue homogenate. Results: Cd-induced oxidative stress in the kidney resulted in increased levels of lipid peroxidation and protein carbonyl content with a significant decrease in cellular antioxidants, such as reduced GSH, SOD, CAT, GPX, and GST. Cd-induced nephrotoxicity was further confirmed by marked changes in the histology of the kidney and increased levels of kidney markers. Additionally, Cd-treated rats showed alterations in membrane-bound ATPase activity and decreased levels of tissue glycoproteins. Cotreatment with TCE considerably reduced the biochemical alterations in serum and renal tissue induced by Cd, and also restored ATPase activity and glycoproteins to near normal levels. Conclusion: Our results suggested that TCE with its antioxidant effect offered cytoprotection against Cd-induced toxicity in kidneys by restoring the altered cellular antioxidants and renal markers. TCE treatment for 28 days reversed ATPase activity and tissue glycoprotein levels. These results revealed the protective effect of TCE on Cd-induced toxicity in kidneys and oxidative stress

    Reversal of doxorubicin resistance in lung cancer cells by neferine is explained by nuclear factor erythroid-derived 2-like 2 mediated lung resistance protein down regulation

    No full text
    Aim: Development of multi drug resistance and dose limiting cardiotoxicity are hindering the use of Doxorubicin (Dox) in clinical settings. Augmented dox efflux induced by lung resistance protein (LRP) over expression has been related to multi drug resistance phenotype in various cancers. An alkaloid from lotus, Neferine (Nef) shows both anticancer and cardioprotective effects. Here, we have investigated the interconnection between nuclear factor erythroid-derived 2-like 2 (NRF2) and LRP in Dox resistance and how Nef can overcome Dox resistance in lung cancer cells by altering this signaling.Methods: Anti-proliferative and apoptotic-inducing effects of Nef and Dox combination in Parental and Dox resistant lung cancer cells were determined in monolayers and 3D spheroids. Intracellular Dox was analyzed using flow cytometry, siRNA knockdown and western blot analysis were used to elucidate NRF2-LRP crosstalk mechanism.Results: We observed that the Dox resistant lung cancer cells expressed higher levels of LRP, reduced glutathione (GSH) and NRF2. Combination of Dox and Nef induced apoptosis, leads to reactive oxygen species (ROS) generation, GSH depletion and reduction in LRP levels contributing to higher intracellular and intranuclear Dox accumulation. The use of N-acetylcysteine and knockdown studies confirmed an important role of ROS and NRF2 in LRP down regulation. Presence of NRF2 binding sites in LRP is support of direct interaction between LRP and NRF2.Conclusion: Nef sensitizes lung cancer cells to Dox by increasing intracellular and/or intra nuclear Dox accumulation via LRP down regulation. This is mediated by redox regulating NRF2. This decoded crosstalk mechanism reinforces the role of NRF2 and LRP in Dox resistance and as an important anticancer target

    Neuroprotective Role of Phytochemicals

    Get PDF
    Neurodegenerative diseases are normally distinguished as disorders with loss of neurons. Various compounds are being tested to treat neurodegenerative diseases (NDs) but they possess solitary symptomatic advantages with numerous side effects. Accumulative studies have been conducted to validate the benefit of phytochemicals to treat neurodegenerative diseases including Alzheimer’s disease (AD) and Parkinson’s disease (PD). In this present review we explored the potential efficacy of phytochemicals such as epigallocatechin-3-galate, berberin, curcumin, resveratrol, quercetin and limonoids against the most common NDs, including Alzheimer’s disease (AD) and Parkinson’s disease (PD). The beneficial potentials of these phytochemicals have been demonstrated by evidence-based but more extensive investigation needs to be conducted for reducing the progression of AD and PD

    Decapeptide from Potato Hydrolysate Induces Myogenic Differentiation and Ameliorates High Glucose-Associated Modulations in Protein Synthesis and Mitochondrial Biogenesis in C2C12 Cells

    No full text
    Sarcopenia is characterized as an age-related loss of muscle mass that results in negative health consequences such as decreased strength, insulin resistance, slowed metabolism, increased body fat mass, and a substantially diminished quality of life. Additionally, conditions such as high blood sugar are known to further exacerbate muscle degeneration. Skeletal muscle development and regeneration following injury or disease are based on myoblast differentiation. Bioactive peptides are biologically active peptides found in foods that could have pharmacological functions. The aim of this paper was to investigate the effect of decapeptide DI-10 from the potato alcalase hydrolysate on myoblast differentiation, muscle protein synthesis, and mitochondrial biogenesis in vitro. The treatment of C2C12 myoblasts with DI-10 (10 µg/mL) did not induce cell death. DI-10 treatment in C2C12 myoblast cells accelerates the phosphorylation of promyogenic kinases such as ERK, Akt and mTOR proteins in a dose-dependent manner. DI-10 improves myotubes differentiation and upregulates the expression of myosin heavy chain (MyHC) protein in myoblast cells under differentiation medium with high glucose. DI-10 effectively increased the phosphorylation of promyogenic kinases Akt, mTOR, and mitochondrial-related transcription factors AMPK and PGC1α expression under hyperglycemic conditions. Further, decapeptide DI-10 decreased the expression of Murf1 and MAFbx proteins, which are involved in protein degradation and muscle atrophy. Our reports support that decapeptide DI-10 could be potentially used as a therapeutic candidate for preventing muscle degeneration in sarcopenia
    corecore