20 research outputs found

    Classification and Multifaceted Potential of Secondary Metabolites Produced by Bacillus subtilis Group: A Comprehensive Review

    No full text
    Despite their remarkable biosynthetic potential, Bacillus subtilis have been widely overlooked. However, their capability to withstand harsh conditions (extreme temperature, Ultraviolet (UV) and γ-radiation, and dehydration) and the promiscuous metabolites they synthesize have created increased commercial interest in them as a therapeutic agent, a food preservative, and a plant-pathogen control agent. Nevertheless, the commercial-scale availability of these metabolites is constrained due to challenges in their accessibility via synthesis and low fermentation yields. In the context of this rising in interest, we comprehensively visualized the antimicrobial peptides produced by B. subtilis and highlighted their prospective applications in various industries. Moreover, we proposed and classified these metabolites produced by the B. subtilis group based on their biosynthetic pathways and chemical structures. The biosynthetic pathway, bioactivity, and chemical structure are discussed in detail for each class. We believe that this review will spark a renewed interest in the often disregarded B. subtilis and its remarkable biosynthetic capabilities

    Classification and Multifaceted Potential of Secondary Metabolites Produced by <i>Bacillus subtilis</i> Group: A Comprehensive Review

    No full text
    Despite their remarkable biosynthetic potential, Bacillus subtilis have been widely overlooked. However, their capability to withstand harsh conditions (extreme temperature, Ultraviolet (UV) and γ-radiation, and dehydration) and the promiscuous metabolites they synthesize have created increased commercial interest in them as a therapeutic agent, a food preservative, and a plant-pathogen control agent. Nevertheless, the commercial-scale availability of these metabolites is constrained due to challenges in their accessibility via synthesis and low fermentation yields. In the context of this rising in interest, we comprehensively visualized the antimicrobial peptides produced by B. subtilis and highlighted their prospective applications in various industries. Moreover, we proposed and classified these metabolites produced by the B. subtilis group based on their biosynthetic pathways and chemical structures. The biosynthetic pathway, bioactivity, and chemical structure are discussed in detail for each class. We believe that this review will spark a renewed interest in the often disregarded B. subtilis and its remarkable biosynthetic capabilities

    Evaluation of Bi-Lateral Co-Infections and Antibiotic Resistance Rates among COVID-19 Patients in Lahore, Pakistan

    No full text
    Background and Objective: Bacterial infections are among the major complications of many viral respiratory tract illnesses, such as influenza and coronavirus disease-2019 (COVID-19). These bacterial co-infections are associated with an increase in morbidity and mortality rates. The current observational study was conducted at a tertiary care hospital in Lahore, Pakistan among COVID-19 patients with the status of oxygen dependency to see the prevalence of bacterial co-infections and their antibiotic susceptibility patterns. Materials and Methods: A total of 1251 clinical samples were collected from already diagnosed COVID-19 patients and tested for bacterial identification (cul-tures) and susceptibility testing (disk diffusion and minimum inhibitory concentration) using gold standard diagnostic methods. Results: From the total collected samples, 234 were found positive for different bacterial isolates. The most common isolated bacteria were Escherichia coli (E. coli) (n = 62) and Acinetobacter baumannii (A. baumannii) (n = 47). The E. coli isolates have shown the highest resistance to amoxicillin and ampicillin, while in the case of A. baumannii, the highest resistance was noted against tetracycline. The prevalence of methicillin resistant Staphylococcus aureus (MRSA) was 14.9%, carbapenem resistant Enterobacteriaceae (CRE) was 4.5%, and vancomycin resistant Enterococ-cus (VRE) was 3.96%. Conclusion: The results of the current study conclude that empiric antimicro-bial treatment in critically ill COVID-19 patients may be considered if properly managed within institutional or national level antibiotic stewardship programs, because it may play a protective role in the case of bacterial co-infections, especially when a patient has other AMR risk factors, such as hospital admission within the previous six months

    Genotypic and Phenotypic Characterization of Erythromycin-Resistant <i>Staphylococcus aureus</i> Isolated from Bovine Mastitis and Humans in Close Contact

    No full text
    Staphylococcus aureus (S. aureus) is a major causative agent of mastitis and is resistant to many antibiotics. Thus, there is a need to characterize the genetic determinants of S. aureus erythromycin resistance, such as ermA, ermB and ermC. The current study aimed to determine the phenotypic and genotypic erythromycin resistance profile and relatedness of S. aureus recovered from bovine mastitis and humans in close contact. A total of 14 mastitis-infected buffalo milk samples and 16 samples from their respective milkers were collected from different farms of Lahore, Pakistan. The antibiotic resistance profile was determined through the disk diffusion test. The overall prevalence of S. aureus in mastitis-affected buffaloes was found to be 75%, of which 52.1% were resistant to erythromycin and 42.8% to clindamycin. S. aureus isolates recovered from milker nasal samples showed 56.25% resistance to erythromycin and 44% resistance to clindamycin. Genotypic antibiotic resistance profiles were determined from 14 milk samples through PCR. Overall, eight (52.1%), three (21.4%) and five (35.7%) S. aureus isolates were positive for the ermA, ermB and ermC genes, respectively. Moreover, 16 milker nasal S. aureus isolates were also tested for the presence of ermA, ermB and ermC genes. The ermA, ermB and ermC genes were observed in nine(56.7%), five (31.3%) and seven (43.7%) isolates, respectively. A significant association was shown between phenotypic and genotypic erythromycin resistance. The results indicate both that there are sufficient genetic similarities, and the actual transmission of erythromycin resistance genes between these two hosts of S. aureus.</i

    Heavy Metal (Arsenic) Induced Antibiotic Resistance among Extended-Spectrum &beta;-Lactamase (ESBL) Producing Bacteria of Nosocomial Origin

    No full text
    Antimicrobial resistance (AMR) is a leading cause of treatment failure for many infectious diseases worldwide. Improper overdosing and the misuse of antibiotics contributes significantly to the emergence of drug-resistant bacteria. The co-contamination of heavy metals and antibiotic compounds existing in the environment might also be involved in the spread of AMR. The current study was designed to test the efficacy of heavy metals (arsenic) induced AMR patterns in clinically isolated extended-spectrum &beta;-lactamase (ESBL) producing bacteria. A total of 300 clinically isolated ESBL-producing bacteria were collected from a tertiary care hospital in Lahore, Pakistan, with the demographic characteristics of patients. After the collection of bacterial isolates, these were reinoculated on agar media for reidentification purposes. Direct antimicrobial sensitivity testing (AST) for bacterial isolates by disk diffusion methods was used to determine the AST patterns with and without heavy metal. The heavy metal was concentrated in dilutions of 1.25 g/mL. The collected bacterial isolates were isolated from wounds (n = 63, 21%), urine (n = 112, 37.3%), blood (n = 43, 14.3%), pus (n = 49, 16.3%), and aspirate (n = 33, 11%) samples. From the total 300 bacterial isolates, n = 172 were Escherichia coli (57.3%), 57 were Klebsiella spp. (19%), 32 were Pseudomonas aeruginosa (10.6%), 21 were Proteus mirabilis (7%) and 18 were Enterobacter spp. (6%). Most of the antibiotic drugs were found resistant to tested bacteria. Colistin and Polymyxin-B showed the highest sensitivity against all tested bacteria, but when tested with heavy metals, these antibiotics were also found to be significantly resistant. We found that heavy metals induced the resistance capability in bacterial isolates, which leads to higher AMR patterns as compared to without heavy metal tested isolates. The results of the current study explored the heavy metal as an inducer of AMR and may contribute to the formation and spread of AMR in settings that are contaminated with heavy metals

    Genetic Variants and Protective Immunity against SARS-CoV-2

    No full text
    The novel coronavirus-19 (SARS-CoV-2), has infected numerous individuals worldwide, resulting in millions of fatalities. The pandemic spread with high mortality rates in multiple waves, leaving others with moderate to severe symptoms. Co-morbidity variables, including hypertension, diabetes, and immunosuppression, have exacerbated the severity of COVID-19. In addition, numerous efforts have been made to comprehend the pathogenic and host variables that contribute to COVID-19 susceptibility and pathogenesis. One of these endeavours is understanding the host genetic factors predisposing an individual to COVID-19. Genome-Wide Association Studies (GWAS) have demonstrated the host predisposition factors in different populations. These factors are involved in the appropriate immune response, their imbalance influences susceptibility or resistance to viral infection. This review investigated the host genetic components implicated at the various stages of viral pathogenesis, including viral entry, pathophysiological alterations, and immunological responses. In addition, the recent and most updated genetic variations associated with multiple host factors affecting COVID-19 pathogenesis are described in the study

    Prediction of Putative Epitope Peptides against BaeR Associated with TCS Adaptation in <i>Acinetobacter baumannii</i> Using an In Silico Approach

    No full text
    Background and Objectives: The BaeR protein is involved in the adaptation system of A. baumannii and is associated with virulence factors responsible for systemic infections in hospitalized patients. This study was conducted to characterize putative epitope peptides for the design of vaccines against BaeR protein, using an immune-informatic approach. Materials and Methods: FASTA sequences of BaeR from five different strains of A. baumannii were retrieved from the UNIPROT database and evaluated for their antigenicity, allergenicity and vaccine properties using BepiPred, Vaxijen, AlgPred, AntigenPro and SolPro. Their physio-chemical properties were assessed using the Expasy Protparam server. Immuno-dominant B-cell and T-cell epitope peptides were predicted using the IEDB database and MHC cluster server with a final assessment of their interactions with TLR-2. Results: A final selection of two peptide sequences (36aa and 22aa) was made from the 38 antigenic peptides. E1 was considered a soluble, non-allergenic antigen, and possessed negative GRAVY values, substantiating the hydrophilic nature of the proteins. Further analysis on the T-cell epitopes, class I immunogenicity and HLA allele frequencies yielded T-cell immuno-dominant peptides. The protein–peptide interactions of the TLR-2 receptor showed good similarity scores in terms of the high number of hydrogen bonds compared to other protein-peptide interactions. Conclusions: The two epitopes predicted from BaeR in the present investigation are promising vaccine candidates for targeting the TCS of A. baumannii in systemic and nosocomial infections. This study also demonstrates an alternative strategy to tackling and mitigating MDR strains of A. baumannii and provides a useful reference for the design and construction of novel vaccine candidates against this bacteria

    Designing an Epitope-Based Peptide Vaccine Derived from RNA-Dependent RNA Polymerase (RdRp) against Dengue Virus Serotype 2

    No full text
    Dengue fever (DF) continues to be one of the tropical and subtropical health concerns. Its prevalence tends to increase in some places in these regions. This disease is caused by the dengue virus (DENV), which is transmitted through the mosquitoes Aedes aegypti and A. albopictus. The treatment of DF to date is only supportive and there is no definitive vaccine to prevent this disease. The non-structural DENV protein, RNA-dependent RNA Polymerase (RdRp), is involved in viral replication. The RdRp-derived peptides can be used in the construction of a universal dengue vaccine. These peptides can be utilized as epitopes to induce immunity. This study was an in silico evaluation of the affinity of the potential epitope for the universal dengue vaccine to dendritic cells and the bonds between the epitope and the dendritic cell receptor. The peptide sequence MGKREKKLGEFGKAKG generated from dengue virus subtype 2 (DENV-2) RdRp was antigenic, did not produce allergies, was non-toxic, and had no homology with the human genome. The potential epitope-based vaccine MGKREKKLGEFGKAKG binds stably to dendritic cell receptors with a binding free energy of −474,4 kcal/mol. This epitope is anticipated to induce an immunological response and has the potential to serve as a universal dengue virus vaccine candidate
    corecore