5 research outputs found

    Genome-wide analyses of the mung bean NAC gene family reveals orthologs, co-expression networking and expression profiling under abiotic and biotic stresses

    Get PDF
    Background Mung bean is a short-duration and essential food crop owing to its cash prominence in Asia. Mung bean seeds are rich in protein, fiber, antioxidants, and phytonutrients. The NAC transcription factors (TFs) family is a large plant-specific family, participating in tissue development regulation and abiotic and biotic stresses. Results In this study, we perform genome-wide comparisons of VrNAC with their homologs from Arabidopsis. We identified 81 NAC transcription factors (TFs) in mung bean genome and named as per their chromosome location. A phylogenetic analysis revealed that VrNACs are broadly distributed in nine groups. Moreover, we identified 20 conserved motifs across the VrNACs highlighting their roles in different biological process. Based on the gene structure of the putative VrNAC and segmental duplication events might be playing a vital role in the expansion of mung bean genome. A comparative phylogenetic analysis of mung bean NAC together with homologs from Arabidopsis allowed us to classify NAC genes into 13 groups, each containing several orthologs and paralogs. Gene ontology (GO) analysis categorized the VrNACs into biological process, cellular components and molecular functions, explaining the functions in different plant physiology processes. A gene co-expression network analysis identified 173 genes involved in the transcriptional network of putative VrNAC genes. We also investigated how miRNAs potentially target VrNACs and shape their interactions with proteins. VrNAC1.4 (Vradi01g03390.1) was targeted by the Vra-miR165 family, including 9 miRNAs. Vra-miR165 contributes to leaf development and drought tolerance. We also performed qRT-PCR on 22 randomly selected VrNAC genes to assess their expression patterns in the NM-98 genotype, widely known for being tolerant to drought and bacterial leaf spot disease. Conclusions This genome-wide investigation of VrNACs provides a unique resource for further detailed investigations aimed at predicting orthologs functions and what role the play under abiotic and biotic stress, with the ultimate aim to improve mung bean production under diverse environmental conditions

    Optimized Conditions of Pac

    No full text

    Unboxing the bZIP transcription factor family exhibiting their role under cold and salt stresses in indica rice

    No full text
    Basic leucine zipper (bZIP) extensively studied transcription factor family and has been implicated in abiotic stress resistance in eukaryotes. Genes encoded by bZIP govern changes in molecular, physiological, and biological processes in response to abiotic stimuli. Developments in molecular knowledge and easy access to the drafted genome of indica rice open ways to explore bZIP and related features within the indica rice genome. We identified 82 TFs encoding bZIPs in the indica rice genome. The identified 82 bZIPs are unevenly distributed across all 12 chromosomes. The identified bZIP family expansion in the indica rice genome is mainly by segmental duplication relative to tandem duplication. The gene structure analysis exhibited that most genes are intron-less and distributed among all phylogenetic groups. We identified 20 different conserved motifs, supporting that bZIPs regulate the different biological processes in rice. The comparative phylogenetic analysis of indica rice bZIPs with Arabidopsis categorized the genes into 11 different groups, having several orthologs and paralogs. Apart from the comparative analysis, gene ontology (GO) analysis illustrated the involvement of bZIPs in different biological processes and the interaction between different processes are important for the metabolic activity of a living organism.Moreover, KEGG pathway analysis identified the 23 bZIPs involved in pathogen infection, carotenoid biosynthesis, and phenylalanine metabolism. Among 23 genes, 12 genes were selected for the expression analysis under salt and cold stress treatments in the Khusboo-95 indica rice variety. In this research, LOC_Os01g17260.2, LOC_Os02g52780.1, and LOC_Os09g10840.1 showed upregulated expression under salt stress conditions. This genome-wide analysis allows researchers to functionally characterize the genes, involved in different abiotic stresses that could be beneficial to improve plant performance under challenging conditions

    Characterization of a Unique Chromosomal Copper Resistance Gene Cluster from Xanthomonas campestris pv. vesicatoria

    No full text
    We characterized the copper resistance genes in strain XvP26 of Xanthomonas campestris pv. vesicatoria, which was originally isolated from a pepper plant in Taiwan. The copper resistance genes were localized to a 7,652-bp region which, based on pulsed-field gel electrophoresis and Southern hybridization, was determined to be located on the chromosome. These genes hybridized only weakly, as determined by Southern analysis, to other copper resistance genes in Xanthomonas and Pseudomonas strains. We identified five open reading frames (ORFs) whose products exhibited high levels of amino acid sequence identity to the products of previously reported copper genes. Mutations in ORF1, ORF3, and ORF4 removed copper resistance, whereas mutations in ORF5 resulted in an intermediate copper resistance phenotype and insertions in ORF2 had no effect on resistance conferred to a copper-sensitive recipient in transconjugant tests. Based on sequence analysis, ORF1 was determined to have high levels of identity with the CopR (66%) and PcoR (63%) genes in Pseudomonas syringae pv. tomato and Escherichia coli, respectively. ORF2 and ORF5 had high levels of identity with the PcoS gene in E. coli and the gene encoding a putative copper-containing oxidoreductase signal peptide protein in Sinorhizobium meliloti, respectively. ORF3 and ORF4 exhibited 23% identity to the gene encoding a cation efflux system membrane protein, CzcC, and 62% identity to the gene encoding a putative copper-containing oxidoreductase protein, respectively. The latter two ORFs were determined to be induced following exposure to low concentrations of copper, while addition of Co, Cd, or Zn resulted in no significant induction. PCR analysis of 51 pepper and 34 tomato copper-resistant X. campestris pv. vesicatoria strains collected from several regions in Taiwan between 1987 and 2000 and nine copper-resistant strains from the United States and South America showed that successful amplification of DNA was obtained only for strain XvP26. The organization of this set of copper resistance genes appears to be uncommon, and the set appears to occur rarely in X. campestris pv. vesicatoria

    Genome-wide analyses of the mung bean NAC gene family reveals orthologs, co-expression networking and expression profiling under abiotic and biotic stresses

    No full text
    Abstract Background Mung bean is a short-duration and essential food crop owing to its cash prominence in Asia. Mung bean seeds are rich in protein, fiber, antioxidants, and phytonutrients. The NAC transcription factors (TFs) family is a large plant-specific family, participating in tissue development regulation and abiotic and biotic stresses. Results In this study, we perform genome-wide comparisons of VrNAC with their homologs from Arabidopsis. We identified 81 NAC transcription factors (TFs) in mung bean genome and named as per their chromosome location. A phylogenetic analysis revealed that VrNACs are broadly distributed in nine groups. Moreover, we identified 20 conserved motifs across the VrNACs highlighting their roles in different biological process. Based on the gene structure of the putative VrNAC and segmental duplication events might be playing a vital role in the expansion of mung bean genome. A comparative phylogenetic analysis of mung bean NAC together with homologs from Arabidopsis allowed us to classify NAC genes into 13 groups, each containing several orthologs and paralogs. Gene ontology (GO) analysis categorized the VrNACs into biological process, cellular components and molecular functions, explaining the functions in different plant physiology processes. A gene co-expression network analysis identified 173 genes involved in the transcriptional network of putative VrNAC genes. We also investigated how miRNAs potentially target VrNACs and shape their interactions with proteins. VrNAC1.4 (Vradi01g03390.1) was targeted by the Vra-miR165 family, including 9 miRNAs. Vra-miR165 contributes to leaf development and drought tolerance. We also performed qRT-PCR on 22 randomly selected VrNAC genes to assess their expression patterns in the NM-98 genotype, widely known for being tolerant to drought and bacterial leaf spot disease. Conclusions This genome-wide investigation of VrNACs provides a unique resource for further detailed investigations aimed at predicting orthologs functions and what role the play under abiotic and biotic stress, with the ultimate aim to improve mung bean production under diverse environmental conditions
    corecore