4 research outputs found

    Transition Metal Migration Can Facilitate Ionic Diffusion in Defect Garnet-Based Intercalation Electrodes

    Get PDF
    The importance of metal migration during multielectron redox activity has been characterized, revealing a competing demand to satisfy bonding requirements and local strains in structures upon alkali intercalation. The local structural evolution required to accommodate intercalation in Y2(MoO4)3 and Al2(MoO4)3 has been contrasted by operando characterization methods, including X-ray absorption spectroscopy and diffraction, along with nuclear magnetic resonance measurements. Computational modeling further rationalized behavioral differences. The local structure of Y2(MoO4)3 was maintained upon lithiation, while the structure of Al2(MoO4)3 underwent substantial local atomic rearrangements as the more ionic character of the bonds in Al2(MoO4)3 allowed Al to mix off its starting octahedral position to accommodate strain during cycling. However, this mixing was prevented in the more covalent Y2(MoO4)3, which accommodated strain through rotational motion of polyhedral subunits. Knowing that an increased ionic character can facilitate the diffusion of redox-inactive metals when cycling multielectron electrodes offers a powerful design principle when identifying next-generation intercalation hosts

    Electrochemical Oxidative Fluorination of an Oxide Perovskite

    Get PDF
    We report on the electrochemical fluorination of the A-site vacant perovskite ReO3 using high-temperature solid-state cells as well as room-temperature liquid electrolytes. Using galvanostatic oxidation and electrochemical impedance spectroscopy, we find that ReO3 can be oxidized by approximately 0.5 equiv of electrons when in contact with fluoride-rich electrolytes. Results from our density functional theory calculations clearly rule out the most intuitive mechanism for charge compensation, whereby F-ions would simply insert onto the A-site of the perovskite structure. Operando X-ray diffraction, neutron total scattering measurements, X-ray spectroscopy, and solid-state 19F NMR with magic-angle spinning were, therefore, used to explore the mechanism by which fluoride ions react with the ReO3 electrode during oxidation. Taken together, our results indicate that a complex structural transformation occurs following fluorination to stabilize the resulting material. While we find that this process of fluorinating ReO3 appears to be only partially reversible, this work demonstrates a practical electrolyte and cell design that can be used to evaluate the mobility of small anions like fluoride that is robust at room temperature and opens new opportunities for exploring the electrochemical fluorination of many new materials

    Correlated Polyhedral Rotations in the Absence of Polarons during Electrochemical Insertion of Lithium in ReO₃

    Get PDF
    Understanding the structural transformations that materials undergo during (de)insertion of Li ions is crucial for designing high-performance intercalation hosts as these deformations can lead to significant capacity fade. Herein, we present a study of the metallic defect perovskite ReO₃ to determine whether these distortions are driven by polaronic charge transport (i.e., the electrons and ions moving through the lattice in a coupled way) due to the semiconducting nature of most oxide hosts. Employing numerous techniques, including electrochemical probes, operando X-ray diffraction, X-ray photoelectron spectroscopy, and density functional theory calculations, we find that the cubic structure of ReO₃ experiences multiple phase changes involving the correlated twisting of rigid octahedral subunits upon lithiation. This results in exceptionally poor long-term cyclability due to large strains upon lithiation, even though metallic character is maintained throughout. This suggests that phase transformations during alkali ion intercalation are the result of local strains in the lattice and not exclusively due to polaron migration

    Perovskite-related ReO3-type structures

    No full text
    corecore