32 research outputs found

    Decreased Prevalence of Autoimmune Connective Tissue Diseases in Type 1 and Type 2 Diabetes

    Get PDF
    Please view the PDF To see the formatted meeting abstract

    Single Cell RNA Sequencing Identifies HSPG2 and APLNR as Markers of Endothelial Cell Injury in Systemic Sclerosis Skin

    Get PDF
    Objective: The mechanisms that lead to endothelial cell (EC) injury and propagate the vasculopathy in Systemic Sclerosis (SSc) are not well understood. Using single cell RNA sequencing (scRNA-seq), our goal was to identify EC markers and signature pathways associated with vascular injury in SSc skin.Methods: We implemented single cell sorting and subsequent RNA sequencing of cells isolated from SSc and healthy control skin. We used t-distributed stochastic neighbor embedding (t-SNE) to identify the various cell types. We performed pathway analysis using Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA). Finally, we independently verified distinct markers using immunohistochemistry on skin biopsies and qPCR in primary ECs from SSc and healthy skin.Results: By combining the t-SNE analysis with the expression of known EC markers, we positively identified ECs among the sorted cells. Subsequently, we examined the differential expression profile between the ECs from healthy and SSc skin. Using GSEA and IPA analysis, we demonstrated that the SSc endothelial cell expression profile is enriched in processes associated with extracellular matrix generation, negative regulation of angiogenesis and epithelial-to-mesenchymal transition. Two of the top differentially expressed genes, HSPG2 and APLNR, were independently verified using immunohistochemistry staining and real-time qPCR analysis.Conclusion: ScRNA-seq, differential gene expression and pathway analysis revealed that ECs from SSc patients show a discrete pattern of gene expression associated with vascular injury and activation, extracellular matrix generation and negative regulation of angiogenesis. HSPG2 and APLNR were identified as two of the top markers of EC injury in SSc

    A model of anti-angiogenesis: differential transcriptosome profiling of microvascular endothelial cells from diffuse systemic sclerosis patients

    Get PDF
    The objective of this work was to identify genes involved in impaired angiogenesis by comparing the transcriptosomes of microvascular endothelial cells from normal subjects and patients affected by systemic sclerosis (SSc), as a unique human model disease characterized by insufficient angiogenesis. Total RNAs, prepared from skin endothelial cells of clinically healthy subjects and SSc patients affected by the diffuse form of the disease, were pooled, labeled with fluorochromes, and hybridized to 14,000 70 mer oligonucleotide microarrays. Genes were analyzed based on gene expression levels and categorized into different functional groups based on the description of the Gene Ontology (GO) consortium to identify statistically significant terms. Quantitative PCR was used to validate the array results. After data processing and application of the filtering criteria, the analyzable features numbered 6,724. About 3% of analyzable transcripts (199) were differentially expressed, 141 more abundantly and 58 less abundantly in SSc endothelial cells. Surprisingly, SSc endothelial cells over-express pro-angiogenic transcripts, but also show up-regulation of genes exerting a powerful negative control, and down-regulation of genes critical to cell migration and extracellular matrix-cytoskeleton coupling, all alterations that provide an impediment to correct angiogenesis. We also identified transcripts controlling haemostasis, inflammation, stimulus transduction, transcription, protein synthesis, and genome organization. An up-regulation of transcripts related to protein degradation and ubiquitination was observed in SSc endothelial cells. We have validated data on the main anti-angiogenesis-related genes by RT-PCR, western blotting, in vitro angiogenesis and immunohistochemistry. These observations indicate that microvascular endothelial cells of patients with SSc show abnormalities in a variety of genes that are able to account for defective angiogenesis

    Dysregulated expression of MIG/CXCL9, IP-10/CXCL10 and CXCL16 and their receptors in systemic sclerosis

    Get PDF
    Abstract Introduction Systemic sclerosis (SSc) is characterized by fibrosis and microvascular abnormalities including dysregulated angiogenesis. Chemokines, in addition to their chemoattractant properties, have the ability to modulate angiogenesis. Chemokines lacking the enzyme-linked receptor (ELR) motif, such as monokine induced by interferon-γ (IFN-γ) (MIG/CXCL9) and IFN-inducible protein 10 (IP-10/CXCL10), inhibit angiogenesis by binding CXCR3. In addition, CXCL16 promotes angiogenesis by binding its unique receptor CXCR6. In this study, we determined the expression of these chemokines and receptors in SSc skin and serum. Methods Immunohistology and enzyme-linked immunosorbent assays (ELISAs) were used to determine chemokine and chemokine receptor expression in the skin and serum, respectively, of SSc and normal patients. Endothelial cells (ECs) were isolated from SSc skin biopsies and chemokine and chemokine receptor expression was determined by quantitative PCR and immunofluorescence staining. Results Antiangiogenic IP-10/CXCL10 and MIG/CXCL9 were elevated in SSc serum and highly expressed in SSc skin. However, CXCR3, the receptor for these chemokines, was decreased on ECs in SSc vs. normal skin. CXCL16 was elevated in SSc serum and increased in SSc patients with early disease, pulmonary arterial hypertension, and those that died during the 36 months of the study. In addition, its receptor CXCR6 was overexpressed on ECs in SSc skin. At the mRNA and protein levels, CXCR3 was decreased while CXCR6 was increased on SSc ECs vs. human microvascular endothelial cells (HMVECs). Conclusions These results show that while the expression of MIG/CXCL9 and IP-10/CXCL10 are elevated in SSc serum, the expression of CXCR3 is downregulated on SSc dermal ECs. In contrast, CXCL16 and CXCR6 are elevated in SSc serum and on SSc dermal ECs, respectively. In all, these findings suggest angiogenic chemokine receptor expression is likely regulated in an effort to promote angiogenesis in SSc skin.http://deepblue.lib.umich.edu/bitstream/2027.42/112894/1/13075_2010_Article_3001.pd

    Vasculitis and renal disease in nail-patella syndrome: case report and literature review.

    No full text
    A 57 year old man with nail-patella syndrome (NPS) and associated renal disease is described who developed an inflammatory polyarthropathy and polyarteritis-like vasculitis. Vasculitis and serum complement abnormalities have not previously been reported in NPS. NPS is a rare autosomal dominant connective tissue disorder affecting both mesenchymal and ectodermal tissue. The condition is reviewed with particular reference to its renal pathology, including the distinctive electron microscopic (EM) finding of collagen deposition in the glomerular basement membrane (GBM). The possibility of the underlying collagen abnormality acting as a trigger for immune-inflammatory changes is discussed

    Initial Evidence of Endothelial Cell Apoptosis as a Mechanism of Systemic Capillary Leak Syndrome

    No full text
    Background: Systemic capillary leak syndrome (SCLS) is a rare disorder of unknown etiology that is characterized by acute recurrent attacks of hypovolemic shock commonly following an inflammatory stimulus such as a viral illness. Prophylactic therapy is generally ineffective, and the outcome is frequently fatal. Methods: In order to investigate the cellular mechanisms leading to SCLS, we examined the effects of sera from two patients with active SCLS on microvascular endothelial cell apoptosis in vitro. Apoptosis was determined by morphologic criteria, DNA fragmentation, annexin V stain, and by a quantitative photometric assay. The apoptotic pathway was investigated by Western blot of endothelial cells lysate after exposure to SCLS sera. Results: The sera from patients with active SCLS mediated profound apoptosis of microvascular endothelial cells shortly after exposure. The exposed microvascular endothelial cells underwent immediate apoptosis as evidenced by morphologic changes, plasma membrane phosphatidylserine exposure, and by DNA fragmentation. Increased Bax/Bcl-2 ratio in endothelial cells exposed to SCLS sera was observed and suggested an oxidation injury as the possible mechanism for endothelial apoptosis. This potential mechanism was further explored by measuring intracellular reactive oxygen species (ROS) following SCLS serum exposure. Sera from both patients caused marked increases in ROS, initially detectable at 1 h and persisted for at least 12 h, with control serum from healthy subjects showing no effect on basal endothelial cell ROS concentrations. Conclusion: Components from the sera of patients with active systemic capillary leak syndrome in contrast to healthy subject sera mediate early and extensive endothelial apoptosis in vitro that is associated with oxidation injury. These data represent compelling initial evidence for oxidation-induced apoptosis as a likely mechanism for endothelial injury leading to SCLS

    Cardiovascular disease in autoimmune rheumatic diseases

    No full text
    Various autoimmune rheumatic diseases (ARDs), including rheumatoid arthritis, spondyloarthritis, vasculitis and systemic lupus erythematosus, are associated with premature atherosclerosis. However, premature atherosclerosis has not been uniformly observed in systemic sclerosis. Furthermore, although experimental models of atherosclerosis support the role of antiphospholipid antibodies in atherosclerosis, there is no clear evidence of premature atherosclerosis in antiphospholipid syndrome (APA). Ischemic events in APA are more likely to be caused by pro-thrombotic state than by enhanced atherosclerosis. Cardiovascular disease (CVD) in ARDs is caused by traditional and non-traditional risk factors. Besides other factors, inflammation and immunologic abnormalities, the quantity and quality of lipoproteins, hypertension, insulin resistance/hyperglycemia, obesity and underweight, presence of platelets bearing complement protein C4d, reduced number and function of endothelial progenitor cells, apoptosis of endothelial cells, epigenetic mechanisms, renal disease, periodontal disease, depression, hyperuricemia, hypothyroidism, sleep apnea and vitamin D deficiency may contribute to the premature CVD. Although most research has focused on systemic inflammation, vascular inflammation may play a crucial role in the premature CVD in ARDs. It may be involved in the development and destabilization of both atherosclerotic lesions and of aortic aneurysms (a known complication of ARDs). Inflammation in subintimal vascular and perivascular layers appears to frequently occur in CVD, with a higher frequency in ARD than in non-ARD patients. It is possible that this inflammation is caused by infections and/or autoimmunity, which might have consequences for treatment. Importantly, drugs targeting immunologic factors participating in the subintimal inflammation (e.g., T- and B-cells) might have a protective effect on CVD. Interestingly, vasa vasorum and cardiovascular adipose tissue may play an important role in atherogenesis. Inflammation and complement depositions in the vessel wall are likely to contribute to vascular stiffness. Based on biopsy findings, also inflammation in the myocardium and small vessels may contribute to premature CVD in ARDs (cardiac ischemia and heart failure). There is an enormous need for an improved CVD prevention in ARDs. Studies examining the effect of DMARDs/biologics on vascular inflammation and CV risk are warranted

    Effects of cardiotonic steroids on dermal collagen synthesis and wound healing

    No full text
    We previously reported that cardiotonic steroids stimulate collagen synthesis by cardiac fibroblasts in a process that involves signaling through the Na-K-ATPase pathway (Elkareh et al. Hypertension 49: 215–224, 2007). In this study, we examined the effect of cardiotonic steroids on dermal fibroblasts collagen synthesis and on wound healing. Increased collagen expression by human dermal fibroblasts was noted in response to the cardiotonic steroid marinobufagenin in a dose- and time-dependent fashion. An eightfold increase in collagen synthesis was noted when cells were exposed to 10 nM marinobufagenin for 24 h (P < 0.01). Similar increases in proline incorporation were seen following treatment with digoxin, ouabain, and marinobufagenin (10 nM × 24 h, all results P < 0.01 vs. control). The coadministration of the Src inhibitor PP2 or N-acetylcysteine completely prevented collagen stimulation by marinobufagenin. Next, we examined the effect of digoxin, ouabain, and marinobufagenin on the rate of wound closure in an in vitro model where human dermal fibroblasts cultures were wounded with a pipette tip and monitored by digital microscopy. Finally, we administered digoxin in an in vivo wound healing model. Olive oil was chosen as the digoxin carrier because of a favorable partition coefficient observed for labeled digoxin with saline. This application significantly accelerated in vivo wound healing in rats wounded with an 8-mm biopsy cut. Increased collagen accumulation was noted 9 days after wounding (both P < 0.01). The data suggest that cardiotonic steroids induce increases in collagen synthesis by dermal fibroblasts, as could potentially be exploited to accelerate wound healing
    corecore