2 research outputs found

    The robustness of interdependent clustered networks

    Full text link
    It was recently found that cascading failures can cause the abrupt breakdown of a system of interdependent networks. Using the percolation method developed for single clustered networks by Newman [Phys. Rev. Lett. {\bf 103}, 058701 (2009)], we develop an analytical method for studying how clustering within the networks of a system of interdependent networks affects the system's robustness. We find that clustering significantly increases the vulnerability of the system, which is represented by the increased value of the percolation threshold pcp_c in interdependent networks.Comment: 6 pages, 6 figure

    The extreme vulnerability of interdependent spatially embedded networks

    Full text link
    Recent studies show that in interdependent networks a very small failure in one network may lead to catastrophic consequences. Above a critical fraction of interdependent nodes, even a single node failure can invoke cascading failures that may abruptly fragment the system, while below this "critical dependency" (CD) a failure of few nodes leads only to small damage to the system. So far, the research has been focused on interdependent random networks without space limitations. However, many real systems, such as power grids and the Internet, are not random but are spatially embedded. Here we analytically and numerically analyze the stability of systems consisting of interdependent spatially embedded networks modeled as lattice networks. Surprisingly, we find that in lattice systems, in contrast to non-embedded systems, there is no CD and \textit{any} small fraction of interdependent nodes leads to an abrupt collapse. We show that this extreme vulnerability of very weakly coupled lattices is a consequence of the critical exponent describing the percolation transition of a single lattice. Our results are important for understanding the vulnerabilities and for designing robust interdependent spatial embedded networks.Comment: 13 pages, 5 figure
    corecore