20 research outputs found
Chronic supplementation of proanthocyanidins reduces postprandial lipemia and liver miR-33a and miR-122 levels in a dose-dependent manner in healthy rats
10.1016/j.jnutbio.2013.09.014Elevated postprandial triglycerides are associated with an increased risk of cardiovascular disease. Acute proanthocyanidin supplementation improves postprandial lipemia. Therefore, in this study, we evaluated whether a chronic treatment (3weeks) of grape seed proanthocyanidins (GSPE) improves tolerance to lipid overload and represses liver miRNA-33a and miRNA-122 and their target genes as a mechanism to soften the elevated postprandial triglycerides in healthy rats. Additionally, the minimal GSPE chronic dose required to alter miRNA levels was determined by means of a dose-response experiment using 5, 15, 25, or 50mg of GSPE/kg body weight. GSPE repressed miR-33a and miR-122 liver expression and reduced postprandial lipemia in a dose-dependent manner. Significant effects were only observed at high levels of proanthocyanidin consumption, but moderate doses of proanthocyanidins were still able to modulate miRNA expression. Therefore, it can be suggested that a population with a normal intake of proanthocyanidin-rich foods can benefit from the modulation of miRNA expression. At the molecular level, this action can confer homeostatic robustness and will thus exert subtle changes in lipid metabolism, thereby reducing the risk associated with postprandial hyperlipemia
Omega-3 polyunsaturated fatty acids and proanthocyanidins improve postprandial metabolic flexibility in rat
10.1002/biof.1129Postprandial lipemia influences the development of atherosclerosis, which itself constitutes a risk factor for the development of cardiovascular diseases. The introduction of bioactive compounds may prevent these deleterious effects. Proanthocyanidins are potent antioxidants that have hypolipidemic properties, while omega-3 polyunsaturated fatty acids (?3 PUFAs) stimulate fatty acid oxidation and gene expression programs, controlling mitochondrial functions. In this study, we investigated the effects of acute treatment of ?3 PUFAs and proanthocyanidins on the metabolic flexibility and lipid handling profiles in the skeletal muscle and adipose tissue of rats that were raised on diets, high in saturated fatty acids. For this, oil rich in docosahexaenoic (DHA-OR), grape seed proanthocyanidins extract (GSPE), or both substances (GSPE?+?DHA-OR) were administered with an overload of lard oil to healthy Wistar rats. Our results indicate that the addition of DHA-OR to lard oil increases insulin sensitivity and redirects fatty acids toward skeletal muscle, thereby activating fatty acid oxidation. We also observed an improvement in adipose mitochondrial functionality and uncoupling. In contrast, GSPE lowers lipidemia, prevents muscle reactive oxygen species (ROS) production and damage, furthermore, activates mitochondrial biogenesis and lipogenesis in adipose tissue. The addition of GSPE+DHA-OR to lard resulted in nearly all the effects of DHA-OR and GSPE administered individually, but the combined administration resulted in a more attenuated profile
Chronic Administration of Proanthocyanidins or Docosahexaenoic Acid Reversess the Increase of miR-33a and miR-122 in Dyslipidemic Obese Rats
10.1371/journal.pone.006981