2 research outputs found

    Influence of different types of acids and pH in the recovery of bioactive compounds in Jabuticaba peel (Plinia cauliflora)

    No full text
    Jabuticaba peel presents a high content of bioactive compounds such as phenolic acids, flavonoids, and anthocyanins, normally considered as a food residue. Nowadays, there is a great interesting in the recovery of bioactive compounds from food residue due to health benefits of the ingredients produced, environmental issues and economic aspects. For the success of phenolic compounds extraction, the solvent and pH influence recovery of these compounds. However, studies that evaluate the use of different weak acids bioactive compounds recovery are scarce. Thus, the aim of the present work was to evaluate the effect of formic, acetic, and phosphoric acids addition in the extraction solvent, to adjust the pH to 1.0, 2.0 and 3.0, in bioactive compounds recovery and antioxidant capacity of jabuticaba peel. The extracts were analyzed as antioxidant capacity (ORAC, FRAP), total phenols content monomeric anthocyanin's and a qualitative analysis of phenolics by Liquid Chromatography with mass spectrometry (LC-MS). The kind of acid used in the extraction process affected mainly in the extraction of anthocyanins. The acid that presented a better recovery of anthocyanin (3.4 mg/g raw material) and a better antioxidant capacity (ORAC) (841 mu mol TE/g raw material) was formic acid in pH 1.01241626CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPES301108/2016-1não tem2017/04231-8; 2015/50333-112th Latin American symposium on food science (SLACA) : food science and its impact on a changing worl

    Impregnation of passion fruit bagasse extract in alginate aerogel microparticles

    No full text
    Passion fruit bagasse extract (PFBE) is a rich source of polyphenols, including piceatannol. This work produced alginate (1, 2, 3 wt%) aerogel and investigated the impregnation of gallic acid (GA) and PFBE in alginate aerogel microparticles. The microparticles of ca. 100 μm in diameter were obtained by emulsion-gelation method, submitted to solvent exchange, wet impregnation (WI) and supercritical drying. Alginate aerogels derived from 1 wt% solution led to a higher GA loading and, therefore, this formulation was used to impregnate PFBE. The loading of PFBE, total phenolic, and piceatannol contents based on grams of raw aerogel were 0.62 g, 10.77 mg, and 741.85 μg, respectively, which means a loading efficiency of total phenolics and piceatannol of 47.1% and 34.7%. DSC analysis and X-ray diffraction showed that particles behave as amorphous materials and ORAC assay revealed that impregnated aerogel microparticles presented antioxidant capacity. Alginate aerogel microparticles presented as an appropriated material for drug loading, whereas WI and supercritical drying demonstrated to be useful techniques to load PBBE in aerogels15510601068CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP303063/2018-1Sem informação2016/02007-0; 2017/18883-7; 2015/11932-7; 2017/23670-
    corecore