59 research outputs found

    Heterostructures of III-Nitride Semiconductors for Optical and Electronic Applications

    Get PDF
    III-Nitride-based heterostructures are well suited for the fabrication of various optoelectronic devices such as light-emitting diodes (LEDs), laser diodes (LDs), high-power/high-frequency field-effect transistors (FETs), and tandem solar cells because of their inherent properties. However, the heterostructures grown along polar direction are affected by the presence of internal electric field induced by the existence of intrinsic spontaneous and piezoelectric polarizations. The internal electric field is deleterious for optoelectronic devices as it causes a spatial separation of electron and hole wave functions in the quantum wells, which thereby decreases the emission efficiency. The growth of III-nitride heterostructures in nonpolar or semipolar directions is an alternative option to minimize the piezoelectric polarization. The heterostructures grown on these orientations are receiving a lot of focus due to their potential improvement on the efficiency of optoelectronic devices. In the present chapter, the growth of polar and nonpolar III-nitride heterostructures using molecular beam epitaxy (MBE) system and their characterizations are discussed. The transport properties of the III-nitride heterostructure-based Schottky junctions are also included. In addition, their applications toward UV and IR detectors are discussed

    Transport and infrared photoresponse properties of InN nanorods/Si heterojunction

    Get PDF
    The present work explores the electrical transport and infrared (IR) photoresponse properties of InN nanorods (NRs)/n-Si heterojunction grown by plasma-assisted molecular beam epitaxy. Single-crystalline wurtzite structure of InN NRs is verified by the X-ray diffraction and transmission electron microscopy. Raman measurements show that these wurtzite InN NRs have sharp peaks E2(high) at 490.2 cm-1 and A1(LO) at 591 cm-1. The current transport mechanism of the NRs is limited by three types of mechanisms depending on applied bias voltages. The electrical transport properties of the device were studied in the range of 80 to 450 K. The faster rise and decay time indicate that the InN NRs/n-Si heterojunction is highly sensitive to IR light

    Group III-Nitrides and Their Hybrid Structures for Next-Generation Photodetectors

    Get PDF
    In the last few decades, there has been a phenomenal rise and evolution in the field of III–Nitride semiconductors for optoelectronic applications such as lasers, sensors and detectors. However, certain hurdles still remain in the path of designing high-performance photodetectors (PDs) based on III-Nitride semiconductors considering their device performance. Recently, a lot of progress has been achieved in devices based on the high quality epilayers grown by molecular beam epitaxy (MBE). Being an ultra-high vacuum environment based-technique, MBE has enabled the realization of high-quality and highly efficient PDs which have exhibited competitive figures of merit to that of the commercial PDs. Moreover, by combining the novel properties of 2D materials with MBE-grown III-Nitrides, devices with enhanced functionalities have been realized which would pave a way towards the next-generation photonics. In the current chapter, the basic concepts about photodetection have been presented in detail, followed by a discussion on the basic properties of the III-Nitride semiconductors, and the recent advancements in the field of MBE-grown III-Nitrides-based PDs, with an emphasis on their hybrid structures. Finally, an outlook has been provided highlighting the present shortcomings as well as the unresolved issues associated with the present-day devices in this emerging field of research

    InN Quantum Dot Based Infra-Red Photodetectors

    No full text
    Self-assembled InN quantum dots (QDs) were grown on Si(111) substrate using plasma assisted molecular beam epitaxy (PA-MBE). Single-crystalline wurtzite structure of InN QDs was confirmed by X-ray diffraction. The dot densities were varied by varying the indium flux. Variation of dot density was confirmed by FESEM images. Interdigitated electrodes were fabricated using standard lithography steps to form metal-semiconductor-metal (MSM) photodetector devices. The devices show strong infrared response. It was found that the samples with higher density of InN QDs showed lower dark current and higher photo current. An explanation was provided for the observations and the experimental results were validated using Silvaco Atlas device simulator

    Trap modulated photoresponse of InGaN/Si isotype heterojunction at zero-bias

    No full text
    n-n isotype heterojunction of InGaN and bare Si (111) was formed by plasma assisted molecular beam epitaxy without nitridation steps or buffer layers. High resolution X-ray diffraction studies were carried out to confirm the formation of epilayers on Si (111). X-ray rocking curves revealed the presence of large number of edge threading dislocations at the interface. Room temperature photoluminescence studies were carried out to confirm the bandgap and the presence of defects. Temperature dependent I-V measurements of Al/InGaN/Si (111)/Al taken in dark confirm the rectifying nature of the device. I-V characteristics under UV illumination, showed modest rectification and was operated at zero bias making it a self-powered device. A band diagram of the heterojunction is proposed to understand the transport mechanism for self-powered functioning of the device. (c) 2015 AIP Publishing LLC

    Double Gaussian distribution of barrier height observed in densely packed GaN nanorods over Si (111) heterostructures

    No full text
    GaN nanorods were grown by plasma assisted molecular beam epitaxy on intrinsic Si (111) substrates which were characterized by powder X-ray diffraction, field emission scanning electron microscopy, and photoluminescence. The current-voltage characteristics of the GaN nanorods on Si (111) heterojunction were obtained from 138 to 493K which showed the inverted rectification behavior. The I-V characteristics were analyzed in terms of thermionic emission model. The temperature variation of the apparent barrier height and ideality factor along with the non-linearity of the activation energy plot indicated the presence of lateral inhomogeneities in the barrier height. The observed two temperature regimes in Richardson's plot could be well explained by assuming two separate Gaussian distribution of the barrier heights. (C) 2014 AIP Publishing LLC

    Structural and optical characterization of nonpolar (10-10) m-InN/m-GaN epilayers grown by PAMBE

    No full text
    Plasma-assisted molecular beam epitaxy growth of (10-10) m-InN/(10-10) m-GaN was carried out on bare (10-10) m-sapphire substrate. The high resolution X-ray diffraction studies confirmed the orientation of the as-grown films. Nonpolar InN layer was grown at different growth temperatures ranging from 390 degrees C to 440 degrees C and the FWHM of rocking curve revealed good quality film at low temperatures. An in-plane relationship was established for the hetrostructures using phi-scan and a perfect alignment was found for the epilayers. Change of morphology of the films grown at different temperatures was observed using an atomic force microscopy technique showing the smoothest film grown at 400 degrees C. InN optical band gap was found to be vary from 0.79-0.83 eV from absorption spectra. The blue-shift of absorption edge was found to be induced by excess background electron concentration. (C) 2015 Elsevier B.V. All rights reserved

    Enhanced UV detection by non-polar epitaxial GaN films

    No full text
    Nonpolar a-GaN (11-20) epilayers were grown on r-plane (1-102) sapphire substrates using plasma assisted molecular beam epitaxy. High resolution x-ray diffractometer confirmed the orientation of the grown film. Effect of the Ga/N ratio on the morphology and strain of a-GaN epilayers was compared and the best condition was obtained for the nitrogen flow of 1 sccm. Atomic force microscopy was used to analyze the surface morphology while the strain in the film was quantitatively measured using Raman spectroscopy and qualitatively analyzed by reciprocal space mapping technique. UV photo response of a-GaN film was measured after fabricating a metal-semiconductor-metal structure over the film with gold metal. The external quantum efficiency of the photodetectors fabricated in the (0002) polar and (11-20) nonpolar growth directions were compared in terms of responsivity and nonpolar GaN showed the best sensitivity at the cost of comparatively slow response time. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License

    Enhanced UV detection by non-polar epitaxial GaN films

    No full text
    Nonpolar a-GaN (11-20) epilayers were grown on r-plane (1-102) sapphire substrates using plasma assisted molecular beam epitaxy. High resolution x-ray diffractometer confirmed the orientation of the grown film. Effect of the Ga/N ratio on the morphology and strain of a-GaN epilayers was compared and the best condition was obtained for the nitrogen flow of 1 sccm. Atomic force microscopy was used to analyze the surface morphology while the strain in the film was quantitatively measured using Raman spectroscopy and qualitatively analyzed by reciprocal space mapping technique. UV photo response of a-GaN film was measured after fabricating a metal-semiconductor-metal structure over the film with gold metal. The external quantum efficiency of the photodetectors fabricated in the (0002) polar and (11-20) nonpolar growth directions were compared in terms of responsivity and nonpolar GaN showed the best sensitivity at the cost of comparatively slow response time

    Current transport in nonpolar a-plane InN/GaN eterostructures Schottky junction

    No full text
    The temperature dependent current transport properties of nonpolar a-plane (11 2 0) InN/GaN heterostructure Schottky junction were investigated. The barrier height ( b) and ideally factor (η) estimated from the thermionic emission (TE) model were found to be temperature dependent in nature. The conventional Richardson plot of the ln(I s/T 2) versus 1/kT has two regions: the first region (150-300 K) and the second region (350-500 K). The values of Richardson constant (A +) obtained from this plot are found to be lower than the theoretical value of n-type GaN. The variation in the barrier heights was explained by a double Gaussian distribution with mean barrier height values ( b ) of 1.17 and 0.69 eV with standard deviation (� s) of 0.17 and 0.098 V, respectively. The modified Richardson plot in the temperature range 350-500 K gives the Richardson constant which is close to the theoretical value of n-type GaN. Hence, the current mechanism is explained by TE by assuming the Gaussian distribution of barrier height. At low temperature 150-300 K, the absence of temperature dependent tunneling parameters indicates the tunneling assisted current transport mechanism. © 2012 American Institute of Physics
    corecore