2 research outputs found

    The impact of chronic rhinosinusitis on COVID-19 risk and outcomes: A systematic review and meta-analysis

    Get PDF
    BackgroundThe impact of chronic rhinosinusitis (CRS) and subsequent steroid therapy on acquiring COVID-19 and severe outcomes remains controversial. Therefore, we conducted this systematic review and meta-analysis to provide cumulative evidence regarding the risk of COVID-19 and the impact of steroid therapy, length of hospital stay, mechanical ventilation, and mortality among CRC patients.MethodsWe conducted a comprehensive electronic search strategy using the relevant keywords. The outcomes and risk factors of COVID-19 in CRS patients was estimated and compared to a healthy control group when applicable.ResultsA total of seven studies were included, with an estimated prevalence of 6.5% (95% confidence interval (CI): 2.5-15.7) for COVID-19 in the CRS group. COVID-19 prevalence did not differ between CRS and controls (odds ratio (OR): 0.92; 95%CI: 0.84-1.01; p = 0.08). Moreover, using steroid/immunosuppressive therapy did not significantly increase the risk of acquiring COVID-19 in CRS patients compared to the control group (OR: 3.31; 95%CI: 0.72-15.26; p = 0.12). Length of hospital stay, mechanical ventilation, and mortality rates were comparable between the two groups. Furthermore, we found that male sex, cardiovascular morbidity, renal diseases, and hypertension were inversely associated with COVID-19 infection (p < 0.01).ConclusionCRS had a neutral effect on acquiring COVID-19 and developing severe outcomes. However, further studies are needed

    Preventing the Next Pandemic: Is Live Vaccine Efficacious against Monkeypox, or Is There a Need for Killed Virus and mRNA Vaccines?

    No full text
    (1) Background: The monkeypox virus (MPV) is a double-stranded DNA virus belonging to the Poxviridae family, Chordopoxvirinae subfamily, and Orthopoxvirus genus. It was called monkeypox because it was first discovered in monkeys, in a Danish laboratory, in 1958. However, the actual reservoir for MPV is still unknown. (2) Methods and Results: We have reviewed the existing literature on the options for Monkeypox virus. There are three available vaccines for orthopoxviruses—ACAM2000, JYNNEOS, and LC16—with the first being a replicating vaccine and the latter being non- or minimally replicating. (3) Conclusions: Smallpox vaccinations previously provided coincidental immunity to MPV. ACAM2000 (a live-attenuated replicating vaccine) and JYNNEOS (a live-attenuated, nonreplicating vaccine) are two US FDA-approved vaccines that can prevent monkeypox. However, ACAM2000 may cause serious side effects, including cardiac problems, whereas JYNNEOS is associated with fewer complications. The recent outbreaks across the globe have once again highlighted the need for constant monitoring and the development of novel prophylactic and therapeutic modalities. Based on available data, there is still a need to develop an effective and safe new generation of vaccines specific for monkeypox that are killed or developed into a mRNA vaccine before monkeypox is declared a pandemic
    corecore