181 research outputs found

    CMB Telescopes and Optical Systems

    Full text link
    The cosmic microwave background radiation (CMB) is now firmly established as a fundamental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB observations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1: Telescopes and Instrumentatio

    Natural history, phenotypic spectrum, and discriminative features of multisystemic RFC1 disease

    Get PDF
    Objective To delineate the full phenotypic spectrum, discriminative features, piloting longitudinal progression data, and sample size calculations of replication factor complex subunit 1 (RFC1) repeat expansions, recently identified as causing cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS). Methods Multimodal RFC1 repeat screening (PCR, Southern blot, whole-exome/genome sequencing?based approaches) combined with cross-sectional and longitudinal deep phenotyping in (1) cross-European cohort A (70 families) with ?2 features of CANVAS or ataxia with chronic cough (ACC) and (2) Turkish cohort B (105 families) with unselected late-onset ataxia. Results Prevalence of RFC1 disease was 67% in cohort A, 14% in unselected cohort B, 68% in clinical CANVAS, and 100% in ACC. RFC1 disease was also identified in Western and Eastern Asian individuals and even by whole-exome sequencing. Visual compensation, sensory symptoms, and cough were strong positive discriminative predictors (>90%) against RFC1-negative patients. The phenotype across 70 RFC1-positive patients was mostly multisystemic (69%), including dysautonomia (62%) and bradykinesia (28%) (overlap with cerebellar-type multiple system atrophy [MSA-C]), postural instability (49%), slow vertical saccades (17%), and chorea or dystonia (11%). Ataxia progression was ?1.3 Scale for the Assessment and Rating of Ataxia points per year (32 cross-sectional, 17 longitudinal assessments, follow-up ?9 years [mean 3.1 years]) but also included early falls, variable nonlinear phases of MSA-C?like progression (SARA points 2.5?5.5 per year), and premature death. Treatment trials require 330 (1-year trial) and 132 (2-year trial) patients in total to detect 50% reduced progression. Conclusions RFC1 disease is frequent and occurs across continents, with CANVAS and ACC as highly diagnostic phenotypes yet as variable, overlapping clusters along a continuous multisystemic disease spectrum, including MSA-C-overlap. Our natural history data help to inform future RFC1 treatment trials. Classification of Evidence This study provides Class II evidence that RFC1 repeat expansions are associated with CANVAS and ACC.FUNDING: Study Funding This work was supported via the European Union’s Horizon 2020 research and innovation program by the BMBF under the frame of the E-Rare-3 network PREPARE (01GM1607; to M. Synofzik,M.A., H.P., B.P.v.d.W.), by the DFG under the frame of EJP-RD network PROSPAX (No. 441409627; M. Synofzik, B.P.v.d.W., A.N.B.), and grant 779257 “Solve-RD” (toM. Synofzik, B.P.v.d.W.). B.P.v.d.W. receives additional research support from ZonMW, Hersenstichting, Gossweiler Foundation, uniQure, and Radboud University Medical Centre. T.B.H. was supported by the DFG (No 418081722). A.T. receives funding from the University of T¨ubingen, medical faculty, for the Clinician Scientist Program grant 439-0-0. A.C. thanks Medical Research Council, MR/T001712/1) and Fondazione CARIPLO (2019-1836) for grant support. L.S., T.K., B.P.v.d.W., and M. Synofzik are members of the European Reference Network for Rare Neurological Diseases, project 739510. A.N.B. is supported by the Suna and Inan Kirac Foundation and Koç University School of Medicine

    Natural History, Phenotypic Spectrum, and Discriminative Features of Multisystemic RFC1-disease

    Get PDF
    OBJECTIVE: To delineate the full phenotypic spectrum, discriminative features, piloting longitudinal progression data, and sample size calculations of RFC1-repeat expansions, recently identified as causing cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS). METHODS: Multimodal RFC1 repeat screening (PCR, southern blot, whole-exome/genome (WES/WGS)-based approaches) combined with cross-sectional and longitudinal deep-phenotyping in (i) cross-European cohort A (70 families) with ≥2 features of CANVAS and/or ataxia-with-chronic-cough (ACC); and (ii) Turkish cohort B (105 families) with unselected late-onset ataxia. RESULTS: Prevalence of RFC1-disease was 67% in cohort A, 14% in unselected cohort B, 68% in clinical CANVAS, and 100% in ACC. RFC1-disease was also identified in Western and Eastern Asians, and even by WES. Visual compensation, sensory symptoms, and cough were strong positive discriminative predictors (>90%) against RFC1-negative patients. The phenotype across 70 RFC1-positive patients was mostly multisystemic (69%), including dysautonomia (62%) and bradykinesia (28%) (=overlap with cerebellar-type multiple system atrophy [MSA-C]), postural instability (49%), slow vertical saccades (17%), and chorea and/or dystonia (11%). Ataxia progression was ∼1.3 SARA points/year (32 cross-sectional, 17 longitudinal assessments, follow-up ≤9 years [mean 3.1]), but also included early falls, variable non-linear phases of MSA-C-like progression (SARA 2.5-5.5/year), and premature death. Treatment trials require 330 (1-year-trial) and 132 (2-year-trial) patients in total to detect 50% reduced progression. CONCLUSIONS: RFC1-disease is frequent and occurs across continents, with CANVAS and ACC as highly diagnostic phenotypes, yet as variable, overlapping clusters along a continuous multisystemic disease spectrum, including MSA-C-overlap. Our natural history data help to inform future RFC1-treatment trials. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that RFC1-repeat expansions are associated with CANVAS and ACC

    Association of Variants in the SPTLC1 Gene with Juvenile Amyotrophic Lateral Sclerosis

    Get PDF
    Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation. Objective: To identify the genetic variants associated with juvenile ALS. Design, Setting, and Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism. Main Outcomes and Measures: De novo variants present only in the index case and not in unaffected family members. Results: Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway. Conclusions and Relevance: These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.

    Mathematical models for immunology:current state of the art and future research directions

    Get PDF
    The advances in genetics and biochemistry that have taken place over the last 10 years led to significant advances in experimental and clinical immunology. In turn, this has led to the development of new mathematical models to investigate qualitatively and quantitatively various open questions in immunology. In this study we present a review of some research areas in mathematical immunology that evolved over the last 10 years. To this end, we take a step-by-step approach in discussing a range of models derived to study the dynamics of both the innate and immune responses at the molecular, cellular and tissue scales. To emphasise the use of mathematics in modelling in this area, we also review some of the mathematical tools used to investigate these models. Finally, we discuss some future trends in both experimental immunology and mathematical immunology for the upcoming years

    Genetic correlation between amyotrophic lateral sclerosis and schizophrenia

    Get PDF
    A. Palotie on työryhmän Schizophrenia Working Grp Psychiat jäsen.We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05-21.6; P = 1 x 10(-4)) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (P = 8.4 x 10(-7)). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08-1.26) but this would require very large studies to observe epidemiologically. We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies.Peer reviewe
    corecore