31 research outputs found

    Do Avian Blood Parasites Influence Hypoxia Physiology in a High Elevation Environment?

    Get PDF
    BACKGROUND: Montane birds which engage in elevational movements have evolved to cope with fluctuations in environmental hypoxia, through changes in physiological parameters associated with blood oxygen-carrying capacity such as haemoglobin concentration (Hb) and haematocrit (Hct). In particular, elevational migrants which winter at low elevations, encounter varying intensities of avian haemosporidian parasites as they traverse heterogeneous environments. Whilst high intensity parasite infections lead to anaemia, one can expect that the ability to cope with haemosporidian infections should be a key trait for elevational migrants that must be balanced against reducing the oxygen-carrying capacity of blood in response to high elevation. In this study, we explored the links between environmental hypoxia, migration, and disease ecology by examining natural variation in infections status and intensity of avian haemoporidians across a suite of Himalayan birds with different migratory strategies while controlling for host phylogeny. RESULTS: We found predictably large variation in haemoglobin levels across the elevational gradient and this pattern was strongly influenced by season and whether birds are elevational migrants. The overall malaria infection intensity declined with elevation whereas Hb and Hct decreased with increase in parasite intensity, suggesting an important role of malaria parasites on hypoxia stressed birds in high elevation environments. CONCLUSIONS: Our results provide a key insight into how physiological measures and sub-clinical infections might affect dynamics of high-elevation bird populations. We suggest a potential impact of avian elevational migration on disease dynamics and exposure to high intensity infections with disease spread in the face of climate change, which will exacerbate hypoxic stress and negative effects of chronic avian malaria infection on survival and reproductive success in wild birds. Future work on chronic parasite infections must consider parasite intensity, rather than relying on infection status alone

    Does Helping-at-the-Nest Help? The Case of the Acorn Woodpecker

    Get PDF
    Cooperative breeding groups often involve helpers-at-the-nest ; indeed, such behavior typically defines this intriguing breeding system. In few cases, however, has it been demonstrated that feeding nestlings by helpers, rather than some other behavior associated with helpers\u27 presence, leads to greater reproductive success. One prediction of the hypothesis that feeding behavior per se is responsible for the fitness benefits conferred by helpers is that there should be close congruence between the patterns of helping-at-the-nest and the fitness effects of helpers. Here we look for such a relationship in the cooperatively breeding acorn woodpecker (Melanerpes formicivorus) in order to begin to identify the behaviors of helpers that drive the increased fitness benefits they confer. In terms of young fledged, a helper male confers approximately the same fitness benefits to a group as does a helper female; more dramatically, the effects of helper males increases with increasing food supply, most importantly the prior year\u27s acorn crop on which this species depends, whereas that of helper females does not. These patterns do not match the nest-feeding patterns of helpers, which are greater for females than males and do not increase with a larger acorn crop the prior autumn. In contrast, the proportion of time helpers spend tending acorn-storage facilities (granaries) and are present in or near their home territory is greater for males than females and, at least for males, positively related to the size of the acorn crop. These results fail to support the hypothesis that the primary benefit conferred by helpers is feeding young in the nest; rather, they suggest that behaviors such as territorial defense and predator detection are more important. Understanding exactly what those behaviors are in this, and most other cooperatively breeding systems, remain to be determined

    Workflow For Constructing Social Networks From Automated Telemetry Systems

    Get PDF
    1. Advances in datalogging technologies have provided a way to monitor the movement of individual animals at unprecedented spatial and temporal scales, both large and small. When used in conjunction with social network analyses, these data can provide insight into fine scale associative behaviors. The variety of technologies demand continuous progress in workflows to translate data streams from automated systems to social networks, based on biologically relevant metrics. 2. Here we present a workflow for generating flexible association matrices from automated radio-telemetry data that can be parsed into both spatial and temporal dimensions. These can then be used to generate and compare social networks across space and time. 3. We illustrate this workflow using data collected from an automated telemetry study of acorn woodpeckers (Melanerpes formicivorus), a cooperatively breeding bird. The data were collected continuously over two years at base stations placed within social group territories. We use this system to demonstrate how this flexible data structure can be used to answer a number of biological questions, specifically 1) how assortative are social associations at the population scale, 2) how do association patterns among territory visitors vary across territories, 3) and how does seasonality affect assortative affiliation within groups? 4. This flexible method allows one to generate social networks that can be used to ask a variety of biological questions pertinent to a wide range of animal systems, exploiting the investigative power that can be gained by using automated radio-telemetry in conjunction with social network analyses

    Habitat Saturation Results in Joint-Nesting Female Coalitions in a Social Bird

    Get PDF
    Joint nesting by females and cooperative polyandry—cooperatively breeding groups with a male-biased breeder sex ratio—are little-understood, rare breeding systems. We tested alternative hypotheses of factors potentially driving these phenomena in a population of joint-nesting acorn woodpeckers (Melanerpes formicivorus). During periods of high population density and thus low independent breeding opportunities, acorn woodpecker females formed joint-nesting coalitions with close kin. Coalitions were typically associated with groups with a male bias. We found strong evidence for both inter- and intrasexual conflict, as joint nesting conferred a fitness benefit to some males, a significant fitness cost to females, and no gain in per capita reproductive output for either sex. Such conflict, particularly the cost to females, may be an important reason why joint nesting is rare among cooperatively breeding taxa

    Lifetime Inclusive Fitness Effects of Cooperative Polygamy in the Acorn Woodpecker

    Get PDF
    Although over 50 y have passed since W. D. Hamilton articulated kin selection and inclusive fitness as evolutionary explanations for altruistic behavior, quantifying inclusive fitness continues to be challenging. Here, using 30 y of data and two alternative methods, we outline an approach to measure lifetime inclusive fitness effects of cooperative polygamy (mate-sharing or cobreeding) in the cooperatively breeding acorn woodpecker Melanerpes formicivorus. For both sexes, the number of offspring (observed direct fitness) declined while the number of young parented by related cobreeders (observed indirect fitness effect) increased with cobreeding coalition size. Combining these two factors, the observed inclusive fitness effect of cobreeding was greater than breeding singly for males, while the pattern for females depended on whether fitness was age-weighted, as females breeding singly accrued greater fitness at younger ages than cobreeding females. Accounting for the fitness birds would have obtained by breeding singly, however, lifetime inclusive fitness effects declined with coalition size for males, but were greater for females breeding as duos compared to breeding singly, due largely to indirect fitness effects of kin. Our analyses provide a road map for, and demonstrate the importance of, quantifying indirect fitness as a powerful evolutionary force contributing to the costs and benefits of social behaviors

    Lifetime Reproductive Benefits of Cooperative Polygamy Vary for Males and Females in the Acorn Woodpecker (\u3ci\u3eMelanerpes formicivorus\u3c/i\u3e)

    Get PDF
    Cooperative breeding strategies lead to short-term direct fitness losses when individuals forfeit or share reproduction. The direct fitness benefits of cooperative strategies are often delayed and difficult to quantify, requiring data on lifetime reproduction. Here, we use a longitudinal dataset to examine the lifetime reproductive success of cooperative polygamy in acorn woodpeckers (Melanerpes formicivorus), which nest as lone pairs or share reproduction with same-sex cobreeders. We found that males and females produced fewer young per successful nesting attempt when sharing reproduction. However, males nesting in duos and trios had longer reproductive lifespans, more lifetime nesting attempts and higher lifetime reproductive success than those breeding alone. For females, cobreeding in duos increased reproductive lifespan so the lifetime reproductive success of females nesting in duos was comparable to those nesting alone and higher than those nesting in trios. These results suggest that for male duos and trios, reproductive success alone may provide sufficient fitness benefits to explain the presence of cooperative polygamy, and the benefits of cobreeding as a duo in females are higher than previously assumed. Lifetime individual fitness data are crucial to reveal the full costs and benefits of cooperative polygamy

    Lifetime inclusive fitness effects of cooperative polygamy in the acorn woodpecker

    Get PDF
    Although over 50 y have passed since W. D. Hamilton articulated kin selection and inclusive fitness as evolutionary explanations for altruistic behavior, quantifying inclusive fitness continues to be challenging. Here, using 30 y of data and two alternative methods, we outline an approach to measure lifetime inclusive fitness effects of cooperative polygamy (mate-sharing or cobreeding) in the cooperatively breeding acorn woodpecker Melanerpes formicivorus. For both sexes, the number of offspring (observed direct fitness) declined while the number of young parented by related cobreeders (observed indirect fitness effect) increased with cobreeding coalition size. Combining these two factors, the observed inclusive fitness effect of cobreeding was greater than breeding singly for males, while the pattern for females depended on whether fitness was age-weighted, as females breeding singly accrued greater fitness at younger ages than cobreeding females. Accounting for the fitness birds would have obtained by breeding singly, however, lifetime inclusive fitness effects declined with coalition size for males, but were greater for females breeding as duos compared to breeding singly, due largely to indirect fitness effects of kin. Our analyses provide a road map for, and demonstrate the importance of, quantifying indirect fitness as a powerful evolutionary force contributing to the costs and benefits of social behaviors.</p

    Lifetime reproductive benefits of cooperative polygamy vary for males and females in the acorn woodpecker (<i>Melanerpes formicivorus</i>)

    Get PDF
    Cooperative breeding strategies lead to short-term direct fitness losses when individuals forfeit or share reproduction. The direct fitness benefits of cooperative strategies are often delayed and difficult to quantify, requiring data on lifetime reproduction. Here, we use a longitudinal dataset to examine the lifetime reproductive success of cooperative polygamy in acorn woodpeckers (Melanerpes formicivorus), which nest as lone pairs or share reproduction with same-sex cobreeders. We found that males and females produced fewer young per successful nesting attempt when sharing reproduction. However, males nesting in duos and trios had longer reproductive lifespans, more lifetime nesting attempts and higher lifetime reproductive success than those breeding alone. For females, cobreeding in duos increased reproductive lifespan so the lifetime reproductive success of females nesting in duos was comparable to those nesting alone and higher than those nesting in trios. These results suggest that for male duos and trios, reproductive success alone may provide sufficient fitness benefits to explain the presence of cooperative polygamy, and the benefits of cobreeding as a duo in females are higher than previously assumed. Lifetime individual fitness data are crucial to reveal the full costs and benefits of cooperative polygamy

    Wandering Woodpeckers: Foray Behavior in a Social Bird

    Get PDF
    In many cooperatively breeding taxa, nonbreeding subordinates, or helpers, use extra-territorial forays to discover dispersal opportunities. Such forays are considered energetically costly and foraying birds face aggression from conspecific members of the territories they visit. In contrast, breeders in cooperatively breeding taxa are expected to foray seldomly. We used novel tracking technologies to follow 62 acorn woodpeckers (Melanerpes formicivorus), a cooperatively breeding bird, to study extra-territorial foray behavior. Both helpers and breeders engaged in extra-territorial forays routinely and often several times per day. Helpers forayed earlier in the day and invested more time when foraying to high-quality territories. Unexpectedly, breeders forayed as often and as far as helpers. Breeders from high-quality territories forayed closer to their home territories than breeders from low-quality territories, reflecting a potential trade-off between foraying and territory defense. Such a routine pattern of extra-territorial forays in both helpers and breeders suggests that the motives behind forays differ by sex and social status and involve more than simply searching for dispersal opportunities
    corecore