26 research outputs found
Investigation on the micro injection molding process of an overmolded multi-material micro component
On the application of replica molding technology for the indirect measurement of surface and geometry of micromilled components
The evaluation of micromilled parts quality requires detailed assessments of both geometry and surface topography. However, in many cases, the reduced accessibility caused by the complex geometry of the part makes it impossible to perform direct measurements. This problem can be solved by adopting the replica molding technology. The method consists of obtaining a replica of the feature that is inaccessible for standard measurement devices and performing its indirect measurement. This paper examines the performance of a commercial replication media applied to the indirect measurement of micromilled components. Two specifically designed micromilled benchmark samples were used to assess the accuracy in replicating both surface texture and geometry. A 3D confocal microscope and a focus variation instrument were employed and the associated uncertainties were evaluated. The replication method proved to be suitable for characterizing micromilled surface texture even though an average overestimation in the nano-metric level of the Sa parameter was observed. On the other hand, the replicated geometry generally underestimated that of the master, often leading to a different measurement output considering the micrometric uncertainty
Performance verification of focus variation and confocal microscopes measuring tilted ultra-fine surfaces
The behaviour of two optical instruments, scilicet a laser scanning confocal microscope and a focus-variation microscope, was investigated considering measurements of tilted surfaces. The measured samples were twelve steel artefacts for mould surface finish reference, covering Sa roughness parameter in the range (101-103) nm. The 3D surface texture parameters considered were Sa, Sq and Sdq. The small working distance of the confocal microscope objectives influenced the measurement setup, preventing from selecting a high tilting angle. The investigation was carried out comparing measurements of flat surfaces (0° tilt) with measurements of 12.5° tilted surfaces. The confocal microscope results showed a high sensitivity to tilting due to the laser beam reflection on the metal surfaces. The focus variation microscope results were more robust with respect to the considered angular variation, although they were out of the instrument operating range except for one of the twelve artefacts